Manifolds of solutions for Hirzebruch functional equations

  • V. M. Buchstaber
  • E. Yu. Bunkova


For the nth Hirzebruch equation we introduce the notion of universal manifold M n of formal solutions. It is shown that the manifold M n, where n > 1, is algebraic and its dimension is not greater than n + 1. We give a family of polynomials generating the relation ideal in the polynomial ring on M n. In the case n = 2 the generators of this ideal are described. As a corollary we obtain an effective description of the manifold M 2 and therefore all series determining complex Hirzebruch genera that are fiberwise multiplicative on projectivizations of complex vector bundles. A family of analytic solutions of the second Hirzebruch equation is described in terms of Weierstrass elliptic functions and in terms of Baker–Akhiezer functions of elliptic curves. For this functions the curves differ, yet the series expansions in the vicinity of 0 coincide.


STEKLOV Institute Elliptic Curve Elliptic Curf Elliptic Function Young Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Hirzebruch, T. Berger, and R. Jung, Manifolds and Modular Forms (Vieweg, Braunschweig, 1992).Google Scholar
  2. 2.
    V. M. Buchstaber and E. Yu. Netay, “CP(2)-multiplicative Hirzebruch genera and elliptic cohomology,” Usp. Mat. Nauk 69 (4), 181–182 (2014)zbMATHGoogle Scholar
  3. 2.
    V. M. Buchstaber Russ. Math. Surv. 69, 757–759 (2014)].zbMATHCrossRefGoogle Scholar
  4. 3.
    V. M. Buchstaber and T. E. Panov, Toric Topology (Am. Math. Soc., Providence, RI, 2015), Math. Surv. Monogr. 204.Google Scholar
  5. 4.
    I. M. Krichever, “Generalized elliptic genera and Baker–Akhiezer functions,” Mat. Zametki 47 (2), 34–45 (1990)zbMATHGoogle Scholar
  6. 4.
    I. M. Krichever, Math. Notes 47, 132–142 (1990)].zbMATHCrossRefGoogle Scholar
  7. 5.
    S. Ochanine, “Sur les genres multiplicatifs définis par des intégrales elliptiques,” Topology 26 (2), 143–151 (1987).MathSciNetGoogle Scholar
  8. 6.
    J. T. Tate, “The arithmetic of elliptic curves,” Invent. Math. 23, 179–206 (1974).MathSciNetCrossRefGoogle Scholar
  9. 7.
    V. M. Buchstaber and E. Yu. Bunkova, “Krichever formal groups,” Funkts. Anal. Prilozh. 45 (2), 23–44 (2011)CrossRefGoogle Scholar
  10. 7.
    V. M. Buchstaber Funct. Anal. Appl. 45, 99–116 (2011)].zbMATHMathSciNetCrossRefGoogle Scholar
  11. 8.
    A. L. Gorodentsev, Algebra: A Coursebook for Mathematics Students (MTsNMO, Moscow, 2013), Part 1 [in Russian].Google Scholar
  12. 9.
    I. G. Macdonald, Symmetric Functions and Hall Polynomials (Clarendon Press, Oxford, 1979).zbMATHGoogle Scholar
  13. 10.
    W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry (Cambridge Univ. Press, Cambridge, 1997).Google Scholar
  14. 11.
    V. M. Buchstaber and S. Terzić, “Equivariant complex structures on homogeneous spaces and their cobordism classes,” in Geometry, Topology, and Mathematical Physics: S.P. Novikov’s Seminar, 2006–2007 (Am. Math. Soc., Providence, RI, 2008), pp. 27–57; arXiv: 0801.3108 [math.AT].Google Scholar
  15. 12.
    F. Hirzebruch, Topological Methods in Algebraic Geometry (Springer, Berlin, 1966).Google Scholar
  16. 13.
    S. P. Novikov, “Adams operators and fixed points,” Izv. Akad. Nauk SSSR, Ser. Mat. 32 (6), 1245–1263 (1968)zbMATHMathSciNetGoogle Scholar
  17. 13.
    S. P. Novikov, Math. USSR, Izv. 2, 1193–1211 (1968)].CrossRefGoogle Scholar
  18. 14.
    V. M. Bukhshtaber, “Functional equations associated with addition theorems for elliptic functions and two-valued algebraic groups,” Usp. Mat. Nauk 45 (3), 185–186 (1990)Google Scholar
  19. 14.
    V. M. Bukhshtaber, Russ. Math. Surv. 45 (3), 213–215 (1990)].zbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations