Laurent phenomenon for Landau-Ginzburg models of complete intersections in Grassmannians

  • Victor V. Przyjalkowski
  • Constantin A. Shramov
Article

Abstract

In 1997 Batyrev, Ciocan-Fontanine, Kim, and van Straten suggested a construction of Landau–Ginzburg models for Fano complete intersections in Grassmannians similar to Givental’s construction for complete intersections in smooth toric varieties. We show that for a Fano complete intersection in a Grassmannian the result of the above construction is birational to a complex torus. In other words, the complete intersections under consideration have very weak Landau–Ginzburg models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Aizenberg, A. K. Tsikh, and A. P. Yuzhakov, “Multidimensional residues and applications,” in Complex Analysis—Many Variables–2 (VINITI, Moscow, 1985), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 8, pp. 5–64Google Scholar
  2. 1.
    L. A. Aizenberg, Engl. transl. in Several Complex Variables. II (Springer, Berlin, 1994), Encycl. Math. Sci. 8, pp. 1–58.Google Scholar
  3. 2.
    V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, and D. van Straten, “Conifold transitions and mirror symmetry for Calabi–Yau complete intersections in Grassmannians,” Nucl. Phys. B 514 (3), 640–666 (1998).MATHCrossRefGoogle Scholar
  4. 3.
    V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, and D. van Straten, “Mirror symmetry and toric degenerations of partial flag manifolds,” Acta Math. 184 (1), 1–39 (2000).MathSciNetCrossRefGoogle Scholar
  5. 4.
    A. Bertram, I. Ciocan-Fontanine, and B. Kim, “Two proofs of a conjecture of Hori and Vafa,” Duke Math. J. 126 (1), 101–136 (2005).MathSciNetCrossRefGoogle Scholar
  6. 5.
    T. Coates, A. Corti, S. Galkin, V. Golyshev, and A. Kasprzyk, “Mirror symmetry and Fano manifolds,” in European Congress of Mathematics: Proc. 6th ECM Congr., Kraków, July 2–7, 2012 (Eur. Math. Soc., ZÜrich, 2013), pp. 285–300.Google Scholar
  7. 6.
    C. F. Doran and A. Harder, “Toric degenerations and the Laurent polynomials related to Givental’s Landau–Ginzburg models,” arXiv: 1502.02079 [math.AG].Google Scholar
  8. 7.
    T. Eguchi, K. Hori, and C.-S. Xiong, “Gravitational quantum cohomology,” Int. J. Mod. Phys. A 12 (9), 1743–1782 (1997).CrossRefGoogle Scholar
  9. 8.
    A. B. Givental, “Equivariant Gromov–Witten invariants,” Int. Math. Res. Not. 1996 (13), 613–663 (1996).CrossRefGoogle Scholar
  10. 9.
    V. Golyshev and J. Stienstra, “Fuchsian equations of type DN,” Commun. Number Theory Phys. 1 (2), 323–346 (2007).MathSciNetCrossRefGoogle Scholar
  11. 10.
    N. O. Ilten, J. Lewis, and V. Przyjalkowski, “Toric degenerations of Fano threefolds giving weak Landau–Ginzburg models,” J. Algebra 374, 104–121 (2013).MathSciNetCrossRefGoogle Scholar
  12. 11.
    Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces (Am. Math. Soc., Providence, RI, 1999), Colloq. Publ. AMS 47.Google Scholar
  13. 12.
    R. J. Marsh and K. Rietsch, “The B-model connection and mirror symmetry for Grassmannians,” arXiv: 1307.1085 [math.AG].Google Scholar
  14. 13.
    R. Pandharipande, “Rational curves on hypersurfaces [after A. Givental],” in Séminaire Bourbaki. Volume 1997/98. Exposés 835–849 (Soc. Math. France, Paris, 1998), Exp. 848, Astérisque 252, pp. 307–340.Google Scholar
  15. 14.
    V. Przyjalkowski, “On Landau–Ginzburg models for Fano varieties,” Commun. Number Theory Phys. 1 (4), 713–728 (2008).Google Scholar
  16. 15.
    V. V. Przyjalkowski, “Minimal Gromov–Witten rings,” Izv. Ross. Akad. Nauk, Ser. Mat. 72 (6), 203–222 (2008)MathSciNetCrossRefGoogle Scholar
  17. 15.
    V. V. Przyjalkowski, Izv. Math. 72, 1253–1272 (2008)].MATHMathSciNetCrossRefGoogle Scholar
  18. 16.
    V. Przyjalkowski, “Hori–Vafa mirror models for complete intersections in weighted projective spaces and weak Landau–Ginzburg models,” Cent. Eur. J. Math. 9 (5), 972–977 (2011).MathSciNetCrossRefGoogle Scholar
  19. 17.
    V. V. Przyjalkowski, “Weak Landau–Ginzburg models for smooth Fano threefolds,” Izv. Ross. Akad. Nauk, Ser. Mat. 77 (4), 135–160 (2013)MathSciNetCrossRefGoogle Scholar
  20. 17.
    V. V. Przyjalkowski, Izv. Math. 77, 772–794 (2013)].MATHMathSciNetCrossRefGoogle Scholar
  21. 18.
    V. Przyjalkowski and C. Shramov, “Laurent phenomenon for Landau–Ginzburg models of complete intersections in Grassmannians of planes,” arXiv: 1409.3729 [math.AG].Google Scholar
  22. 19.
    V. V. Przyjalkowski and C. A. Shramov, “On weak Landau–Ginzburg models for complete intersections in Grassmannians,” Usp. Mat. Nauk 69 (6), 181–182 (2014)MATHGoogle Scholar
  23. 19.
    V. V. Przyjalkowski Russ. Math. Surv. 69, 1129–1131 (2014)].CrossRefGoogle Scholar
  24. 20.
    V. Przyjalkowski and C. Shramov, “On Hodge numbers of complete intersections and Landau–Ginzburg models,” Int. Math. Res. Not., doi: 10.1093/imrn/rnv024 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Victor V. Przyjalkowski
    • 1
  • Constantin A. Shramov
    • 1
  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations