Advertisement

Number of components of the nullcone

  • V. L. Popov
Article

Abstract

For every pair (G, V) where G is a connected simple linear algebraic group and V is a simple algebraic G-module with a free algebra of invariants, the number of irreducible components of the nullcone of unstable vectors in V is found.

Keywords

STEKLOV Institute Algebraic Group Irreducible Component Real Form Nilpotent Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Andreev, B. Vinberg, and A. G. Élashvili, “Orbits of greatest dimension in semi-simple linear Lie groups,” Funkts. Anal. Prilozh. 1 (4), 3–7 (1967)zbMATHGoogle Scholar
  2. 1.
    E. M. Andreev, Funct. Anal. Appl. 1, 257–261 (1967)].Google Scholar
  3. 2.
    E. M. Andreev and V. L. Popov, “Stationary subgroups of points of general position in the representation space of a semisimple Lie group,” Funkts. Anal. Prilozh. 5 (4), 1–8 (1971)Google Scholar
  4. 2.
    E. M. Andreev Funct. Anal. Appl. 5, 265–271 (1971)].Google Scholar
  5. 3.
    N. Bourbaki, Éléments de mathématique, Fasc. XXXIV: Groupes et algÈbres de Lie, Chapitres 4, 5 et 6 (Hermann, Paris, 1968).Google Scholar
  6. 4.
    È. B. Vinberg and A. G. Èlashvili, “Classification of trivectors of a 9-dimensional space,” Tr. Semin. Vektorn. Tenzorn. Anal. Prilozh. Geom. Mekh. Fiz. 18, 197–233 (1978)zbMATHGoogle Scholar
  7. 4.
    È. B. Vinberg Sel. Math. Sov. 7 (1), 63–98 (1988)].zbMATHGoogle Scholar
  8. 5.
    E. B. Vinberg and A. L. Onishchik, Seminar on Lie Groups and Algebraic Groups (Nauka, Moscow, 1988). Engl. transl.Google Scholar
  9. 5.
    A. L. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups (Springer, Berlin, 1990).zbMATHGoogle Scholar
  10. 6.
    V. G. Kac, “On the question of describing the orbit space of linear algebraic groups,” Usp. Mat. Nauk 30 (6), 173–174 (1975).zbMATHGoogle Scholar
  11. 7.
    A. M. Popov, “Irreducible simple linear Lie groups with finite standard subgroups of general position,” Funkts. Anal. Prilozh. 9 (4), 81–82 (1975)zbMATHGoogle Scholar
  12. 7.
    A. M. Popov, Funct. Anal. Appl. 9, 346–347 (1975)].Google Scholar
  13. 8.
    A. M. Popov, “Finite isotropy subgroups in general position of simple linear Lie groups,” Tr. Mosk. Mat. Obshch. 48, 7–59 (1985)Google Scholar
  14. 8.
    A. M. Popov, Trans. Moscow Math. Soc. 1986, 3–63 (1986)].zbMATHGoogle Scholar
  15. 9.
    V. L. Popov, “Representations with a free module of covariants,” Funkts. Anal. Prilozh. 10 (3), 91–92 (1976)Google Scholar
  16. 9.
    V. L. Popov, Funct. Anal. Appl. 10, 242–244 (1976)].Google Scholar
  17. 10.
    V. L. Popov, “The cone of Hilbert nullforms,” Tr. Mat. Inst. im. V.A. SteklovaGoogle Scholar
  18. 10.
    V. L. Popov, Proc. Steklov Inst. Math. 241, 177–194 (2003)].Google Scholar
  19. 11.
    R. Hartshorne, Algebraic Geometry (Springer, New York, 1977), Grad. Text Math. 52.zbMATHGoogle Scholar
  20. 12.
    N. A’Campo and V. L. Popov, “The computer algebra package HNC (Hilbert null cone),” Math. Inst. Univ. Basel, 2004, http://www.geometrie.chGoogle Scholar
  21. 13.
    D. H. Collingwood and W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras (Van Nostrand Reinhold, New York, 1993).Google Scholar
  22. 14.
    V. Gatti and E. Viniberghi, “Spinors of 13-dimensional space,” Adv. Math. 30 (2), 137–155 (1978).CrossRefzbMATHGoogle Scholar
  23. 15.
    V. G. Kac, V. L. Popov, and E. B. Vinberg, “Sur les groupes linéaires algébriques dont l’algÈbre des invariants est libre,” C. R. Acad. Sci. Paris, Sér. A 283 (12), 875–878 (1976).Google Scholar
  24. 16.
    B. Kostant, “The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group,” Am. J. Math. 81, 973–1032 (1959).CrossRefGoogle Scholar
  25. 17.
    B. Kostant and S. Rallis, “Orbits and representations associated with symmetric spaces,” Am. J. Math. 93, 753–809 (1971).CrossRefGoogle Scholar
  26. 18.
    D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, 3rd ed. (Springer, Berlin, 1994), Ergebn. Math. Grenzgeb. 34.Google Scholar
  27. 19.
    V. L. Popov, Groups, Generators, Syzygies, and Orbits in Invariant Theory (Am. Math. Soc., Providence, RI, 1992), Transl. Math. Monogr. 100.zbMATHGoogle Scholar
  28. 20.
    V. Popov, “Sections in invariant theory,” in The Sophus Lie Memorial Conference: Oslo, 1992, Ed. by O. A. Laudal and B. Jahren (Scand. Univ. Press, Oslo, 1994), pp. 315–361.Google Scholar
  29. 21.
    V. L. Popov, “Self-dual algebraic varieties and nilpotent orbits,” in Algebra, Arithmetic and Geometry: Proc. Int. Colloq., Mumbai, 2000, Ed. by R. Parimala (Narosa Publ. House, New Delhi, 2002), Part II, Stud. Math., Tata Inst. Fundam. Res. 16, pp. 509–533.Google Scholar
  30. 22.
    V. L. Popov, “Projective duality and principal nilpotent elements of symmetric pairs,” in Lie Groups and Invariant Theory, Ed. by E. Vinberg (Am. Math. Soc., Providence, RI, 2005)Google Scholar
  31. 22.
    V. L. Popov, AMS Transl., Ser. 2, 213, pp. 215–222.Google Scholar
  32. 23.
    V. L. Popov and E. A. Tevelev, “Self-dual projective algebraic varieties associated with symmetric spaces,” in Algebraic Transformation Groups and Algebraic Varieties, Ed. by V. L. Popov (Springer, Berlin, 2004), Encycl. Math. Sci. 132, Invariant Theory Algebr. Transform. Groups 3, pp. 131–167.Google Scholar
  33. 24.
    V. L. Popov and E. B. Vinberg, “Invariant theory,” in Algebraic Geometry IV, Ed. by A. N. Parshin and I. R. Shafarevich (Springer, Berlin, 1994), Encycl. Math. Sci. 55, pp. 123–278.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations