Geometric realizations of quiver algebras

Article

Abstract

We construct strong exceptional collections of vector bundles on smooth projective varieties that have a prescribed endomorphism algebra. We prove that the construction problem always has a solution. We consider some applications to noncommutative projective planes and to the quiver connected with the three-point Ising function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Artin, J. Tate, and M. Van den Bergh, “Some algebras associated to automorphisms of elliptic curves,” in The Grothendieck Festschrift (Birkhäuser, Boston, 1990), Vol. 1Google Scholar
  2. 1.
    M. Artin, Prog. Math. 86, pp. 33–85.Google Scholar
  3. 2.
    D. Auroux, L. Katzarkov, and D. Orlov, “Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves,” Invent. Math. 166 (3), 537–582 (2006).MathSciNetCrossRefGoogle Scholar
  4. 3.
    A. Bondal and D. Orlov, “Semiorthogonal decompositions for algebraic varieties,” Preprint 95-15 (Max Planck Inst. Math., Bonn, 1995); arXiv: alg-geom/9506012.Google Scholar
  5. 4.
    A. I. Bondal and A. E. Polishchuk, “Homological properties of associative algebras: The method of helices,” Izv. Ross. Akad. Nauk, Ser. Mat. 57 (2), 3–50 (1993)Google Scholar
  6. 4.
    A. I. Bondal Russ. Acad. Sci. Izv. Math. 42, 219–260 (1994)].Google Scholar
  7. 5.
    A. Bondal and M. Van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry,” Moscow Math. J. 3 (1), 1–36 (2003).Google Scholar
  8. 6.
    S. Cecotti and C. Vafa, “On classification of N = 2 supersymmetric theories,” Commun. Math. Phys. 158 (3), 569–644 (1993).CrossRefGoogle Scholar
  9. 7.
    V. Drinfeld, “DG quotients of DG categories,” J. Algebra 272 (2), 643–691 (2004).MathSciNetCrossRefGoogle Scholar
  10. 8.
    P. Gabriel, “Auslander–Reiten sequences and representation-finite algebras,” in Representation Theory I: Proc. Workshop, Ottawa, 1979 (Springer, Berlin, 1980)Google Scholar
  11. 8.
    P. Gabriel, Lect. Notes Math. 831, pp. 1–71.Google Scholar
  12. 9.
    M. Kashiwara and P. Schapira, Categories and Sheaves (Springer, Berlin, 2006).Google Scholar
  13. 10.
    B. Keller, “Deriving DG categories,” Ann. Sci. éc. Norm. Supér., Sér. 4, 27 (1), 63–102 (1994).MATHGoogle Scholar
  14. 11.
    B. Keller, “On differential graded categories,” in Proc. Int. Congr. Math., Madrid, 2006 (Eur. Math. Soc., ZÜrich, 2006), Vol. 2, pp. 151–190.Google Scholar
  15. 12.
    A. Kuznetsov, “A simple counterexample to the Jordan–Hölder property for derived categories,” arXiv: 1304.0903 [math.AG].Google Scholar
  16. 13.
    V. A. Lunts and D. O. Orlov, “Uniqueness of enhancement for triangulated categories,” J. Am. Math. Soc. 23 (3), 853–908 (2010).CrossRefGoogle Scholar
  17. 14.
    A. Neeman, “The Grothendieck duality theorem via Bousfield’s techniques and Brown representability,” J. Am. Math. Soc. 9 (1), 205–236 (1996).CrossRefGoogle Scholar
  18. 15.
    D. O. Orlov, “Projective bundles, monoidal transformations, and derived categories of coherent sheaves,” Izv. Ross. Akad. Nauk, Ser. Mat. 56 (4), 852–862 (1992)MathSciNetGoogle Scholar
  19. 15.
    D. O. Orlov, Russ. Acad. Sci. Izv. Math. 41, 133–141 (1993)].Google Scholar
  20. 16.
    D. Orlov, “Remarks on generators and dimensions of triangulated categories,” Moscow Math. J. 9 (1), 143–149 (2009).Google Scholar
  21. 17.
    D. Orlov, “Smooth and proper noncommutative schemes and gluing of DG categories,” arXiv: 1402.7364 [math.AG].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Department of Algebraic GeometrySteklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations