Cartier isomorphism for unital associative algebras

Article

Abstract

Given an associative unital algebra A over a perfect field k of odd positive characteristic, we construct a noncommutative generalization of the Cartier isomorphism for A. The role of differential forms is played by Hochschild homology classes, and the de Rham differential is replaced with the Connes–Tsygan differential.

References

  1. 1.
    A. Beilinson, “On the crystalline period map,” Cambridge J. Math. 1, 1–51 (2013); arXiv: 1111.3316 [math.AG].MATHCrossRefGoogle Scholar
  2. 2.
    B. Bhatt, “p-Adic derived de Rham cohomology,” arXiv: 1204.6560 [math.AG].Google Scholar
  3. 3.
    A. Connes, “Cohomologie cyclique et foncteurs Extn,” C. R. Acad. Sci. Paris, Sér. I, 296, 953–958 (1983).Google Scholar
  4. 4.
    P. Deligne and L. Illusie, “RelÈvements modulo p2 et décomposition du complexe de de Rham,” Invent. Math. 89, 247–270 (1987).MathSciNetCrossRefGoogle Scholar
  5. 5.
    B. L. Feigin and B. L. Tsygan, “Additive K-theory,” in K-Theory, Arithmetic and Geometry: Semin., Moscow Univ., 1984–1986 (Springer, Berlin, 1987)Google Scholar
  6. 5.
    B. L. Feigin Lect. Notes Math. 1289, pp. 67–209.Google Scholar
  7. 6.
    Séminaire de géométrie algébrique du Bois Marie 1960–1961: Revêtements étales et groupe fondamental (SGA 1), dirigé par A. Grothendieck (Springer, Berlin, 1971), Exp. VI, Lect. Notes Math. 224.Google Scholar
  8. 7.
    D. Kaledin, “Non-commutative Hodge-to-de Rham degeneration via the method of Deligne–Illusie,” Pure Appl. Math. Q. 4, 785–875 (2008).MATHMathSciNetCrossRefGoogle Scholar
  9. 8.
    J.-L. Loday, Cyclic Homology, 2nd ed. (Springer, Berlin, 1998), Grundl. Math. Wiss. 301.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Department of Algebraic GeometrySteklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations