On the structure of ultrafilters and properties related to convergence in topological spaces

  • E. G. PytkeevEmail author
  • A. G. Chentsov


We consider properties of broadly understood measurable spaces that provide the preservation of maximality when ultrafilters are restricted to filters of the corresponding subspace. We study conditions that guarantee the convergence of images of ultrafilters consisting of open sets under continuous mappings.


filter base measurable space topology ultrafilter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Warga, Optimal Control of Differential and Functional Equations (Academic, New York, 1972; Nauka, Moscow, 1977).zbMATHGoogle Scholar
  2. 2.
    R. V. Gamkrelidze, Principles of Optimal Control Theory (Izd. Tbilis. Univ., Tbilisi, 1975; Plenum, New York, 1978).Google Scholar
  3. 3.
    A. G. Chentsov and S. I. Morina, Extensions and Relaxations (Kluwer Acad., Dordrecht, 2002).zbMATHCrossRefGoogle Scholar
  4. 4.
    A. G. Chentsov, “Finitely additive measures and extensions of abstract control problems,” J. Math. Sci. 133(2), 1045–1206 (2006).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    N. Bourbaki, General Topology (Hermann, Paris, 1940; Nauka, Moscow, 1968).Google Scholar
  6. 6.
    R. Engelking, General Topology (PWN, Warsaw, 1983; Mir, Moscow, 1986).Google Scholar
  7. 7.
    A. G. Chentsov, “Certain constructions of asymptotic analysis related to the Stone-Čech compactification,” J. Math. Sci. 140(6), 873–904 (2007).zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    A. G. Chentsov, “Filters and ultrafilters in constructions of attraction sets,” Vestn. Udmurt. Univ., Ser. Mat. Mekh. Komp. Nauki, No. 1, 113–142 (2011).Google Scholar
  9. 9.
    A. G. Chentsov, Elements of the Theory of Finitely Additive Measures II (Izd. UGTU-UPI, Yekaterinburg, 2010) [in Russian].Google Scholar
  10. 10.
    A. G. Chentsov, “On one example of representing the ultrafilter space for an algebra of sets,” Trudy Inst. Mat. Mekh. 17(4), 293–311 (2011).Google Scholar
  11. 11.
    A. G. Chentsov, “Tier mappings and ultrafilter-based transformations,” Trudy Inst. Mat. Mekh. UrO RAN 18(4), 298–314 (2012).Google Scholar
  12. 12.
    A. G. Chentsov, “On the question of representation of ultrafilters in a product of measurable spaces,” Proc. Steklov Inst. Math. 284(Suppl. 1), S65–S78 (2014).zbMATHCrossRefGoogle Scholar
  13. 13.
    A. G. Chentsov, “Representation of attraction elements in abstract attainability problems with asymptotic constraints,” Russ. Math. (Izv. VUZ) 56(10), 38–49 (2012).zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. G. Chentsov, “On the question of representation of ultrafilters and their application in extension constructions,” Proc. Steklov Inst. Math. 287(Suppl. 1), S29–S48 (2014).zbMATHCrossRefGoogle Scholar
  15. 15.
    A. G. Chentsov, “Ultrafilters of measurable spaces as generalized solutions in abstract attainability problems,” Proc. Steklov Inst. Math. 275(Suppl. 1), S12–S39 (2011).zbMATHCrossRefGoogle Scholar
  16. 16.
    A. G. Chentsov, “On one example of the construction of an attraction set with the use of the Stone space,” Vestn. Udmurt. Univ., Ser. Mat. Mekh. Komp. Nauki, No. 4, 108–124 (2012).Google Scholar
  17. 17.
    N. N. Krasovskii, Theory of Motion Control (Nauka, Moscow, 1968) [in Russian].Google Scholar
  18. 18.
    N. N. Krasovskii, Game Problems on the Encounter of Motions (Nauka, Moscow, 1970) [in Russian].zbMATHGoogle Scholar
  19. 19.
    N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974) [in Russian].zbMATHGoogle Scholar
  20. 20.
    A. V. Bulinskii and A. N. Shiryaev, The Theory of Random Processes (Fizmatlit, Moscow, 2005) [in Russian].Google Scholar
  21. 21.
    A. G. Chentsov, “Attraction sets in abstract attainability problems: Equivalent representations and basic properties,” Russ. Math. 57(11), 28–44 (2013).zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Neveu, Mathematical Foundations of the Calculus of Probability (Holden Day, London, 1965; Mir, Moscow, 1969).zbMATHGoogle Scholar
  23. 23.
    N. Dunford and J. Schwartz, Linear Operators: General Theory (Interscience, New York, 1958; Inostrannaya Lit., Moscow, 1962).zbMATHGoogle Scholar
  24. 24.
    A. G. Chentsov, Elements of the Theory of Finitely Additive Measures I (Izd. UGTU-UPI, Yekaterinburg, 2008) [in Russian].Google Scholar
  25. 25.
    L. V. Kantorovich and G. P. Akilov, Functional Analysis (Nauka, Moscow, 1977) [in Russian].Google Scholar
  26. 26.
    R. A. Aleksandryan and E. A. Mirzakhanyan, General Topology (Vysshaya Shkola, Moscow, 1979) [in Russian].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Mathematics and MechanicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Radioelectronics and Information TechnologiesUral Federal UniversityYekaterinburgRussia

Personalised recommendations