On elementary theories of ordinal notation systems based on reflection principles



L.D. Beklemishev has recently introduced a constructive ordinal notation system for the ordinal ɛ 0. We consider this system and its fragments for smaller ordinals ω n (towers of ω-exponentiations of height n). These systems are based on Japaridze’s well-known polymodal provability logic. They are used in the technique of ordinal analysis of the Peano arithmetic PA and its fragments on the basis of iterated reflection schemes. Ordinal notation systems can be regarded as models of the first-order language. We prove that the full notation system and its fragments for ordinals ≥ω 4 have undecidable elementary theories. At the same time, the fragments of the full system for ordinals ≤ω 3 have decidable elementary theories. We also obtain results on decidability of the elementary theory for ordinal notation systems with weaker signatures.


STEKLOV Institute Elementary Theory Predicate Symbol Proof Theory Maximal Subsequence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Beklemishev, “Proof-theoretic analysis by iterated reflection,” Arch. Math. Logic 42(6), 515–552 (2003).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    L. D. Beklemishev, “Provability algebras and proof-theoretic ordinals. I,” Ann. Pure Appl. Logic 128, 103–123 (2004).MathSciNetCrossRefGoogle Scholar
  3. 3.
    L. D. Beklemishev, “Veblen hierarchy in the context of provability algebras,” in Logic, Methodology and Philosophy of Science: Proc. 12th Int. Congr., Oviedo (Spain), 2003 (King’s College Publ., London, 2005), pp.65–78.Google Scholar
  4. 4.
    L. D. Beklemishev, “Reflection principles and provability algebras in formal arithmetic,” Usp. Mat. Nauk 60(2), 3–78 (2005) [Russ. Math. Surv. 60, 197–268 (2005)].MathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Braud, “Covering of ordinals,” in IARCS Annu. Conf. on Foundations of Software Technology and Theoretical Computer Science, Kanpur (India), 2009 (Schloss Dagstuhl-Leibniz Zentrum Inf., Wadern, 2009), Leibniz Int. Proc. Inf. 4, pp. 97–108.Google Scholar
  6. 6.
    J. R. Büchi, “Decision methods in the theory of ordinals,” Bull. Am. Math. Soc. 71, 767–770 (1965).CrossRefMATHGoogle Scholar
  7. 7.
    L. Carlucci, “Worms, gaps, and hydras,” Math. Logic Q. 51(4), 342–350 (2005).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    A. Church, “The constructive second number class,” Bull. Am. Math. Soc. 44, 224–232 (1938).MathSciNetCrossRefGoogle Scholar
  9. 9.
    J. E. Doner, A. Mostowski, and A. Tarski, “The elementary theory of well-ordering—a metamathematical study,” in Proc. Logic Colloquium ′77 (North-Holland, Amsterdam, 1978), Stud. Logic Found. Math. 96, pp. 1–54.CrossRefGoogle Scholar
  10. 10.
    A. Ehrenfeucht, “An application of games to the completeness problem for formalized theories,” Fundam. Math. 49, 129–141 (1961).MathSciNetMATHGoogle Scholar
  11. 11.
    G. Gentzen, “Die Widerspruchsfreiheit der reinen Zahlentheorie,” Math. Ann. 112, 493–565 (1936).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    P. Hájek and P. Pudlák, Metamathematics of first-order arithmetic (Springer, Berlin, 1998).MATHGoogle Scholar
  13. 13.
    K. N. Ignatiev, “On strong provability predicates and the associated modal logics,” J. Symb. Logic 58(1), 249–290 (1993).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    G. K. Japaridze, “The modal logical means of investigation of provability,” Cand. Sci. (Philos.) Dissertation (Moscow State Univ., Moscow, 1986).Google Scholar
  15. 15.
    S. C. Kleene, “On notation for ordinal numbers,” J. Symb. Logic 3(4), 150–155 (1938).MathSciNetCrossRefGoogle Scholar
  16. 16.
    G. Kreisel, “Wie die Beweistheorie zu ihren Ordinalzahlen kam und kommt,” Jahresber. Dtsch. Math.-Ver. 78(4), 177–223 (1977).MathSciNetMATHGoogle Scholar
  17. 17.
    I. A. Lavrov, “Effective inseparability of the set of true formulas and the set of finitely falsifiable formulas for some theories,” Algebra Logika 2(1), 5–18 (1963).MathSciNetGoogle Scholar
  18. 18.
    G. Lee, “A comparison of well-known ordinal notation systems for ɛ 0,” Ann. Pure Appl. Logic 147, 48–70 (2007).MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Mostowski and A. Tarski, “Arithmetical classes and types of well ordered systems,” Bull. Am. Math. Soc. 55(1), 65 (1949).Google Scholar
  20. 20.
    F. N. Pakhomov, “Undecidability of the elementary theory of the semilattice of GLP-words,” Mat. Sb. 203(8), 141–160 (2012) [Sb. Math. 203, 1211–1229 (2012)].MathSciNetCrossRefGoogle Scholar
  21. 21.
    W. Pohlers, Proof Theory: The First Step into Impredicativity (Springer, Berlin, 2008), Universitext.Google Scholar
  22. 22.
    M. Rathjen, “The realm of ordinal analysis,” in Sets and Proofs (Cambridge Univ. Press, Cambridge, 1999), LMS Lect. Note Ser. 258, pp. 219–279.CrossRefGoogle Scholar
  23. 23.
    H. Rogers, Jr., Theory of Recursive Functions and Effective Computability (MIT Press, Cambridge, MA, 1987).Google Scholar
  24. 24.
    K. Schütte and S. G. Simpson, “Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen,” Arch. Math. Logik Grundlagenforsch. 25, 75–89 (1985).CrossRefGoogle Scholar
  25. 25.
    G. Takeuti, Proof Theory (North-Holland, Amsterdam, 1987), Stud. Logic Found. Math. 81.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations