Advertisement

New estimates of odd exponents of infinite Burnside groups

  • S. I. AdianEmail author
Article

Abstract

This article consists of two parts. The first part presents a detailed history of the long-term joint work (1960–1968) of the author and P.S. Novikov on the proof of the infiniteness of the free Burnside groups B(m, n) for odd periods n ≥ 4381 and m > 1 generators (Sections 1 and 2). In Sections 3–10 we survey several significant results obtained by the author and his successors using the Novikov-Adian theory and its various modifications. In the second part (Sections 11–15) we outline a new modification of the Novikov-Adian theory. The new modification allows us to decrease to n ≥ 101 the lower bound on the odd periods n for which one can prove the infiniteness of the free periodic groups B(m, n). We plan to publish a full proof of this new result in the journal Russian Mathematical Surveys.

Keywords

STEKLOV Institute Periodic Group Elementary Period Adian Theory Burnside Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. I. Adian, “Algorithmic unsolvability of problems of recognition of certain properties of groups,” Dokl. Akad. Nauk SSSR 103(4), 533–535 (1955).MathSciNetGoogle Scholar
  2. 2.
    S. I. Adian, “Unsolvability of some algorithmic problems in group theory,” Tr. Mosk. Mat. Obshch. 6, 231–298 (1957).Google Scholar
  3. 3.
    S. I. Adian, “The role of the cancellation law in presenting cancellation semigroups by means of defining relations,” Dokl. Akad. Nauk SSSR 113(6), 1191–1194 (1957).MathSciNetGoogle Scholar
  4. 4.
    S. I. Adian, “On the embeddability of semigroups in groups,” Dokl. Akad. Nauk SSSR 133(2), 255–257 (1960) [Sov. Math., Dokl. 1, 819–821 (1960)].Google Scholar
  5. 5.
    S. I. Adian, “The problem of identity in associative systems of a special form,” Dokl. Akad. Nauk SSSR 135(6), 1297–1300 (1960) [Sov. Math., Dokl. 1, 1360–1363 (1960)].Google Scholar
  6. 6.
    S. I. Adian, “Identities in special semigroups,” Dokl. Akad. Nauk SSSR 143(3), 499–502 (1962) [Sov. Math., Dokl. 3, 401–404 (1962)].MathSciNetGoogle Scholar
  7. 7.
    S. I. Adian, Defining Relations and Algorithmic Problems for Groups and Semigroups (Nauka, Moscow, 1966), Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 85 [Proc. Steklov Inst. Math. 85 (1967)].Google Scholar
  8. 8.
    S. I. Adian, “Infinite irreducible systems of group identities,” Dokl. Akad. Nauk SSSR 190(3), 499–501 (1970) [Sov. Math., Dokl. 11, 113–115 (1970)].MathSciNetGoogle Scholar
  9. 9.
    S. I. Adian, “Infinite irreducible systems of group identities,” Izv. Akad. Nauk SSSR, Ser. Mat. 34(4), 715–734 (1970) [Math. USSR, Izv. 4, 721–739 (1970)].MathSciNetGoogle Scholar
  10. 10.
    S. I. Adian, “On some torsion-free groups,” Izv. Akad. Nauk SSSR, Ser. Mat. 35(3), 459–468 (1971) [Math. USSR, Izv. 5, 475–484 (1971)].MathSciNetGoogle Scholar
  11. 11.
    S. I. Adyan, “Periodic groups of odd exponent,” in Proc. Second Int. Conf. on the Theory of Groups, Aust. Natl. Univ., 1973 (Springer, Berlin, 1974), Lect. Notes Math. 372, pp. 8–12.Google Scholar
  12. 12.
    S. I. Adian, The Burnside Problem and Identities in Groups (Nauka, Moscow, 1975; Springer, Berlin, 1979).Google Scholar
  13. 13.
    S. I. Adian, “Periodic products of groups,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 142, 3–21 (1976) [Proc. Steklov Inst. Math. 142, 1–19 (1979)].zbMATHGoogle Scholar
  14. 14.
    S. I. Adian, “An axiomatic method of constructing groups with given properties,” Usp. Mat. Nauk 32(1), 3–15 (1977) [Russ. Math. Surv. 32 (1), 1–14 (1977)].zbMATHGoogle Scholar
  15. 15.
    S. I. Adian, “On the simplicity of periodic products of groups,” Dokl. Akad. Nauk SSSR 241(4), 745–748 (1978) [Sov. Math., Dokl. 19, 910–913 (1978)].MathSciNetGoogle Scholar
  16. 16.
    S. I. Adian, “On the word problem for groups defined by periodic relations,” in Burnside Groups: Proc. Workshop, Univ. Bielefeld, 1977 (Springer, Berlin, 1980), Lect. Notes Math. 806, pp. 41–46.CrossRefGoogle Scholar
  17. 17.
    S. I. Adian, “Random walks on free periodic groups,” Izv. Akad. Nauk SSSR, Ser. Mat. 46(6), 1139–1149 (1982) [Math. USSR, Izv. 21 (3), 425–434 (1983)].MathSciNetGoogle Scholar
  18. 18.
    S. I. Adian, “Groups with periodic defining relations,” Mat. Zametki 83(3), 323–332 (2008) [Math. Notes 83, 293–300 (2008)].MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. I. Adian, “The Burnside problem and related topics,” Usp. Mat. Nauk 65(5), 5–60 (2010) [Russ. Math. Surv. 65, 805–855 (2010)].CrossRefGoogle Scholar
  20. 20.
    S. I. Adian and V. S. Atabekyan, “The Hopfian property of n-periodic products of groups,” Mat. Zametki 95(4), 483–491 (2014) [Math. Notes 95, 443–449 (2014)].MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. I. Adian and V. S. Atabekyan, “Characteristic properties and uniform nonamenability of n-periodic products of groups,” Izv. Ross. Akad. Nauk, Ser. Mat. 79(6) (2015) [Izv. Math. 79 (6) (2015)].Google Scholar
  22. 22.
    S. I. Adian and I. G. Lysenok, “On groups all of whose proper subgroups are finite cyclic,” Izv. Akad. Nauk SSSR, Ser. Mat. 55(5), 933–990 (1991) [Math. USSR, Izv. 39 (2), 905–957 (1992)].Google Scholar
  23. 23.
    S. I. Adian and I. G. Lysenok, “The method of classification of periodic words and the Burnside problem,” in Proc. Int. Conf. on Algebra, Novosibirsk, 1989 (Am. Math. Soc., Providence, RI, 1992), Part 1, Contemp. Math. 131, pp. 13–28.Google Scholar
  24. 24.
    S. I. Adian and A. A. Razborov, “Periodic groups and Lie algebras,” Usp. Mat. Nauk 42(2), 3–68 (1987) [Russ. Math. Surv. 42 (2), 1–81 (1987)].Google Scholar
  25. 25.
    J. L. Britton, “The existence of infinite Burnside groups,” in Word Problems: Decision Problems and the Burnside Problem in Group Theory (North-Holland, Amsterdam, 1973), Stud. Log. Found. Math. 71, pp. 67–348.CrossRefGoogle Scholar
  26. 26.
    J. L. Britton, “Erratum: The existence of infinite Burnside groups,” in Word Problems II: The Oxford Book (North-Holland, Amsterdam, 1980), Stud. Log. Found. Math. 95, p. 71.CrossRefGoogle Scholar
  27. 27.
    W. Burnside, “On an unsettled question in the theory of discontinuous groups,” Q. J. Pure Appl. Math. 33, 230–238 (1902).zbMATHGoogle Scholar
  28. 28.
    W. Burnside, “On criteria for the finiteness of the order of a group of linear substitutions,” Proc. London Math. Soc., Ser. 2, 3, 435–440 (1905).CrossRefzbMATHGoogle Scholar
  29. 29.
    B. Chandler and W. Magnus, The History of Combinatorial Group Theory: A Case Study in the History of Ideas (Springer, New York, 1982).CrossRefzbMATHGoogle Scholar
  30. 30.
    T. Delzant and M. Gromov, “Courbure mésoscopique et théorie de la toute petite simplification,” J. Topol. 1(4), 804–836 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    R. I. Grigorchuk, “Symmetric random walks on discrete groups,” in Multicomponent Random Systems (Nauka, Moscow, 1978), pp.132–152 [in Russian].Google Scholar
  32. 32.
    M. Greendlinger, “On the word problem and the conjugacy problem,” Izv. Akad. Nauk SSSR, Ser. Mat. 29(2), 245–268 (1965).MathSciNetzbMATHGoogle Scholar
  33. 33.
    M. Gromov, “Hyperbolic groups,” in Essays in Group Theory (Springer, New York, 1987), Publ. Math. Sci. Res. Inst. 8, pp. 75–263.CrossRefGoogle Scholar
  34. 34.
    M. Hall, Jr., “Solution of the Burnside problem for exponent six,” Ill. J. Math. 2, 764–786 (1958).Google Scholar
  35. 35.
    S. V. Ivanov, “The free Burnside groups of sufficiently large exponents,” Int. J. Algebra Comput. 4(1–2), 1–308 (1994).CrossRefGoogle Scholar
  36. 36.
    E. R. van Kampen, “On some lemmas in the theory of groups,” Am. J. Math. 55, 268–273 (1933).MathSciNetCrossRefGoogle Scholar
  37. 37.
    H. Kesten, “Symmetric random walks on groups,” Trans. Am. Math. Soc. 92, 336–354 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Yu. G. Kleiman, “On identities in groups,” Tr. Mosk. Mat. Obshch. 44, 62–108 (1982) [Trans. Moscow Math. Soc., No. 2, 63–110 (1983)].MathSciNetzbMATHGoogle Scholar
  39. 39.
    A. I. Kostrikin, “The Burnside problem,” Izv. Akad. Nauk SSSR, Ser. Mat. 23(1), 3–34 (1959) [Am. Math. Soc. Transl., Ser. 2, 36, 63–99 (1964)].MathSciNetzbMATHGoogle Scholar
  40. 40.
    A. I. Kostrikin, “Sandwiches in Lie algebras,” Math. USSR, Sb. 110(1), 3–12 (1979) [Sb. Math. 38, 1–9 (1981)].MathSciNetGoogle Scholar
  41. 41.
    A. I. Kostrikin, Around Burnside (Nauka, Moscow, 1986; Springer, Berlin, 1990).zbMATHGoogle Scholar
  42. 42.
    I. G. Lysenok, “On some algorithmic properties of hyperbolic groups,” Izv. Akad. Nauk SSSR, Ser. Mat. 53(4), 814–832 (1989) [Math. USSR, Izv. 35 (1), 145–163 (1990)].zbMATHGoogle Scholar
  43. 43.
    I. G. Lysenok, “Infinite Burnside groups of even exponent,” Izv. Ross. Akad. Nauk, Ser. Mat. 60(3), 3–224 (1996) [Izv. Math. 60, 453–654 (1996)].MathSciNetCrossRefGoogle Scholar
  44. 44.
    W. Magnus, “A connection between the Baker-Hausdorff formula and a problem of Burnside,” Ann. Math., Ser. 2, 52, 111–126 (1950).MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations (Interscience, New York, 1966).zbMATHGoogle Scholar
  46. 46.
    B. H. Neumann, “Identical relations in groups. I,” Math. Ann. 114, 506–525 (1937).MathSciNetCrossRefGoogle Scholar
  47. 47.
    P. S. Novikov, On Algorithmic Unsolvability of the Word Problem in Group Theory (Izd. Akad. Nauk SSSR, Moscow, 1955), Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 44.Google Scholar
  48. 48.
    P. S. Novikov, “On periodic groups,” Dokl. Akad. Nauk SSSR 127(4), 749–752 (1959) [Am. Math. Soc. Transl., Ser. 2, 45, 19–22 (1965)].MathSciNetzbMATHGoogle Scholar
  49. 49.
    P. S. Novikov and S. I. Adian, “Infinite periodic groups. I-III,” Izv. Akad. Nauk SSSR, Ser. Mat. 32(1–3), 212–244, 251–524, 709–731 (1968) [Math. USSR, Izv. 2, 209–236, 241–479, 665–685 (1968)].MathSciNetGoogle Scholar
  50. 50.
    P. S. Novikov and S. I. Adian, “Defining relations and the word problem for free periodic groups of odd order,” Izv. Akad. Nauk SSSR, Ser. Mat. 32(4), 971–979 (1968) [Math. USSR, Izv. 2, 935–942 (1968)].MathSciNetzbMATHGoogle Scholar
  51. 51.
    P. S. Novikov and S. I. Adian, “On Abelian subgroups and the conjugacy problem in free periodic groups of odd order,” Izv. Akad. Nauk SSSR, Ser. Mat. 32(5), 1176–1190 (1968) [Math. USSR, Izv. 2, 1131–1144 (1968)].MathSciNetzbMATHGoogle Scholar
  52. 52.
    A. Yu. Ol’shanskii, “An infinite simple Noetherian group without torsion,” Izv. Akad. Nauk SSSR, Ser. Mat. 43(6), 1328–1393 (1979) [Math. USSR, Izv. 15 (3), 531–588 (1980)].MathSciNetGoogle Scholar
  53. 53.
    A. Yu. Ol’shanskii, “On the Novikov-Adyan theorem,” Mat. Sb. 118(2), 203–235 (1982) [Math. USSR, Sb. 46 (2), 203–236 (1983)].MathSciNetGoogle Scholar
  54. 54.
    A. Yu. Ol’shanskii, “Groups of bounded period with subgroups of prime order,” Algebra Logika 21(5), 553–618 (1982) [Algebra Logic 21, 369–418 (1983)].MathSciNetGoogle Scholar
  55. 55.
    A. Yu. Ol’shanskii, “Periodic factor groups of hyperbolic groups,” Mat. Sb. 182(4), 543–567 (1991) [Math. USSR, Sb. 72 (2), 519–541 (1992)].Google Scholar
  56. 56.
    I. N. Sanov, “Solution of Burnside’s problem for exponent 4,” Uch. Zap. Leningr. Gos. Univ., Ser. Mat. Nauk 10, 166–170 (1940).MathSciNetGoogle Scholar
  57. 57.
    I. N. Sanov, “Establishing a connection between periodic groups with period a prime number and Lie rings,” Izv. Akad. Nauk SSSR, Ser. Mat. 16(1), 23–58 (1952).MathSciNetzbMATHGoogle Scholar
  58. 58.
    V. L. Shirvanyan, “Independent systems of defining relations for a free periodic group of odd exponent,” Mat. Sb. 100(1), 132–136 (1976) [Math. USSR, Sb. 29 (1), 119–122 (1976)].MathSciNetGoogle Scholar
  59. 59.
    I. Schur, “Über Gruppen periodischer linearer Substitutionen,” Sitzungsber. K. Preuss. Akad. Wiss., 619–627 (1911).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations