On the question of representation of ultrafilters and their application in extension constructions

  • A. G. ChentsovEmail author


We study ultrafilters of broadly understood measurable spaces and possibilities of their application as generalized elements in the construction of attraction sets in abstract reachability problems with constraints of asymptotic nature. A class of measurable spaces is specified for which all ultrafilters including free ultrafilters (with empty intersection of all of their sets) are built constructively.


measurable space attraction set ultrafilter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Warga, Optimal Control of Differential and Functional Equations (Academic, New York, 1972; Nauka, Moscow, 1977).zbMATHGoogle Scholar
  2. 2.
    R. V. Gamkrelidze, Principles of Optimal Control Theory (Izd. Tbilis. Univ., Tbilisi, 1975; Plenum, New York, 1978).Google Scholar
  3. 3.
    R. J. Duffin, “Infinite programs,” in Linear Inequalities and Related Systems (Princeton Univ. Press, Princeton, NJ, 1956; Inostrannaya Literatura, 1959), pp. 157–170 [pp. 263–267 of the Russian transl.].Google Scholar
  4. 4.
    E. G. Gol’shtein, Duality Theory in Mathematical Programming and Its Applications (Nauka, Moscow, 1971) [in Russian].Google Scholar
  5. 5.
    N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974) [in Russian].zbMATHGoogle Scholar
  6. 6.
    A. V. Skvortsova and A. G. Chentsov, “On the construction of an asymptotic analog of a pencil of trajectories for a linear system with a single-impulse control,” Differential Equations 40(12), 1726–1739 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    A. G. Chentsov, “Ultrafilters in the constructions of attraction sets: Problem of compliance to constraints of asymptotic character,” Differential Equations 47(7), 1059–1076 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    A. G. Chentsov, “On the well-posedness of certain control problems for a material point,” Vestn. Udmurt. Univ., Ser. Mat. Mekh. Komp. Nauki, No. 3, 127–141 (2011).Google Scholar
  9. 9.
    A. G. Chentsov, “Certain constructions of asymptotic analysis related to the Stone-Čech compactification,” J. Math. Sci. 140(6), 873–904 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    R. Engelking, General Topology (PWN, Warsaw, 1983; Mir, Moscow, 1986).Google Scholar
  11. 11.
    A. G. Chentsov, “Representation of attraction elements in abstract attainability problems with asymptotic constraints,” Russ. Math. (Izv. VUZ) 56(10), 38–49 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    A. G. Chentsov, “On the question of the structure of attraction sets in a topological space,” Izv. Inst. Mat. Informat. Udmurt. Univ., No. 1, 147–150 (2012).Google Scholar
  13. 13.
    A. G. Chentsov, “On one example of representing the ultrafilter space for an algebra of sets,” Trudy Inst. Mat. Mekh. 17(4), 293–311 (2011).Google Scholar
  14. 14.
    K. Kuratowski and A. Mostowski, Set Theory (North-Holland, Amsterdam, 1968; Mir, Moscow, 1970).zbMATHGoogle Scholar
  15. 15.
    A. V. Bulinskii and A. N. Shiryaev, The Theory of Random Processes (Fizmatlit, Moscow, 2005) [in Russian].Google Scholar
  16. 16.
    N. Bourbaki, General Topology (Hermann, Paris, 1940; Nauka, Moscow, 1968).Google Scholar
  17. 17.
    A. G. Chentsov, “Extensions of abstract problems of attainability: Nonsequential version,” Proc. Steklov Inst. Math., 259(Suppl.), S46–S82 (2007).CrossRefzbMATHGoogle Scholar
  18. 18.
    A. G. Chentsov, Elements of the Theory of Finitely Additive Measures I (Izd. UGTU-UPI, Yekaterinburg, 2008) [in Russian].Google Scholar
  19. 19.
    N. Dunford and J. Schwartz, Linear Operators: General Theory (Interscience, New York, 1958; Inostrannaya Lit., Moscow, 1962).Google Scholar
  20. 20.
    J. Neveu, Mathematical Foundations of the Calculus of Probability (Holden Day, London, 1965; Mir, Moscow, 1969).zbMATHGoogle Scholar
  21. 21.
    A. G. Chentsov, Elements of the Theory of Finitely Additive Measures II (Izd. UGTU-UPI, Yekaterinburg, 2010) [in Russian].Google Scholar
  22. 22.
    A. G. Chentsov, “One representation of the results of action of approximate solutions in a problem with constraints of asymptotic nature,” Proc. Steklov Inst. Math. 276(Suppl. 1), S48–S62 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    A. G. Chentsov, “Filters and ultrafilters in constructions of attraction sets,” Vestn. Udmurt. Univ., Ser. Mat. Mekh. Komp. Nauki, No. 1, 113–142 (2011).Google Scholar
  24. 24.
    A. G. Chentsov, “On the question of representation of ultrafilters in a product of measurable spaces,” Proc. Steklov Inst. Math. 284(Suppl. 1), S65–S78 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Mathematics and MechanicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Radioelectronics and Information TechnologiesUral Federal UniversityYekaterinburgRussia

Personalised recommendations