Feynman formulas as a method of averaging random Hamiltonians

Article

Abstract

We propose a method for finding the mathematical expectation of random unbounded operators in a Hilbert space. The method is based on averaging random one-parameter semigroups by means of the Feynman-Chernoff formula. We also consider an application of this method to the description of various operations that assign quantum Hamiltonians to the classical Hamilton functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. A. Berezin, The Method of Second Quantization (Nauka, Moscow, 1986) [in Russian]; Engl. transl. of the 1st ed.: The Method of Second Quantization (Academic, New York, 1966), Pure Appl. Phys. 24.MATHGoogle Scholar
  2. 2.
    V. V. Dodonov, V. I. Man’ko, and V. D. Skarzhinsky, “Nonuniquenesses of the variational description of classical systems and the quantization problem,” Tr. Fiz. Inst. im. P.N. Lebedeva, Akad. Nauk SSSR 152, 37–89 (1983) [Proc. Lebedev Phys. Inst. Acad. Sci. USSR 176 (Suppl.), 49–122 (1988)].Google Scholar
  3. 3.
    T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1966; Mir, Moscow, 1972).CrossRefMATHGoogle Scholar
  4. 4.
    V. P. Maslov, Operational Methods (Nauka, Moscow, 1973; Mir, Moscow, 1976).Google Scholar
  5. 5.
    J. O. Ogun, Yu. N. Orlov, and V. Zh. Sakbaev, “On a transformation of the initial-data space for a Cauchy problem with blow-up solutions,” Preprint No. 87 (Keldysh Inst. Appl. Math., Moscow, 2012).Google Scholar
  6. 6.
    Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian,” Teor. Mat. Fiz. 172(1), 122–137 (2012) [Theor. Math. Phys. 172, 987–1000 (2012)].CrossRefGoogle Scholar
  7. 7.
    V. Zh. Sakbaev, “Set-valued mappings specified by regularization of the Schrödinger equation with degeneration,” Zh. Vychisl. Mat. Mat. Fiz. 46(4), 683–699 (2006) [Comput. Math. Math. Phys. 46, 651–665 (2006)].MATHMathSciNetGoogle Scholar
  8. 8.
    V. Zh. Sakbaev, Cauchy Problem for a Degenerate Linear Differential Equation and Averaging Its Approximating Regularizations (Ross. Univ. Druzhby Narodov, Moscow, 2012), Sovrem. Mat., Fundam. Napr. 43.Google Scholar
  9. 9.
    P. R. Chernoff, “Note on product formulas for operator semigroups,” J. Funct. Anal. 2, 238–242 (1968).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    O. G. Smolyanov, A. G. Tokarev, and A. Truman, “Hamiltonian Feynman path integrals via the Chernoff formula,” J. Math. Phys. 43(10), 5161–5171 (2002).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    O. G. Smolyanov, H. von Weizsäcker, and O. Wittich,, “Chernoff’s theorem and discrete time approximations of Brownian motion on manifolds,” Potential Anal. 26(1), 1–29 (2007).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    L. Tartar, “Memory effects and homogenization,” Arch. Ration. Mech. Anal. 111(2), 121–133 (1990).CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    K. Yosida and E. Hewitt, “Finitely additive measures,” Trans. Am. Math. Soc. 72, 46–66 (1952).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Yu. N. Orlov
    • 1
  • V. Zh. Sakbaev
    • 2
  • O. G. Smolyanov
    • 3
  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia
  3. 3.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations