Advertisement

Holographic relation between p-adic effective action and string field theory

  • I. Ya. Aref’eva
Article

Abstract

We consider two holographically related theories. As the first (d + 1)-dimensional theory, we consider a model in which the (d + 1)-dimensional space is the direct product of ℝ d and the half-axis ℝ+ and in which the kinetic operator has a nonlocal term induced by the nonlocal kinetic operator of the p-adic effective action. It turns out that the kinetic operator in the second, holographically related, d-dimensional theory is the kinetic operator of the string field theory effective action.

Keywords

STEKLOV Institute Nonlocal Term Holographic Description Kinetic Operator String Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Aref’eva, “Holography for quark-gluon plasma formation in heavy ion collisions,” Proc. Sci. ICMP 2012, 025 (2012).Google Scholar
  2. 2.
    V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (Nauka, Moscow, 1994; World Sci., Singapore, 1994).CrossRefGoogle Scholar
  3. 3.
    I. Ya. Arefeva, D. M. Belov, A. A. Giryavets, A. S. Koshelev, and P. B. Medvedev, “Noncommutative field theories and (super)string field theories,” in Particles and Fields: Proc. XI Jorge André Swieca Summer School, São Paulo, 2001 (World Sci., Singapore, 2002), pp. 1–163; arXiv: hep-th/0111208.Google Scholar
  4. 4.
    J. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2(2), 231–252 (1998); arXiv: hep-th/9711200.zbMATHMathSciNetGoogle Scholar
  5. 5.
    S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B 428, 105–114 (1998); arXiv: hep-th/9802109.CrossRefMathSciNetGoogle Scholar
  6. 6.
    E. Witten, “Anti de Sitter space and holography,” Adv. Theor. Math. Phys. 2(2), 253–291 (1998); arXiv: hepth/9802150.zbMATHMathSciNetGoogle Scholar
  7. 7.
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, “Gauge/string duality, hot QCD and heavy ion collisions,” arXiv: 1101.0618 [hep-th].Google Scholar
  8. 8.
    I. Ya. Aref’eva and I. V. Volovich, “On large N conformal theories, field theories in anti-de Sitter space and singletons,” arXiv: hep-th/9803028.Google Scholar
  9. 9.
    S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge Univ. Press, London, 1973).CrossRefzbMATHGoogle Scholar
  10. 10.
    I. Ya. Aref’eva and I. V. Volovich, “Breaking of conformal symmetry in the AdS/CFT correspondence,” Phys. Lett. B 433, 49–55 (1998); arXiv: hep-th/9804182.CrossRefMathSciNetGoogle Scholar
  11. 11.
    B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I. V. Volovich, “On p-adic mathematical physics,” p-Adic Numbers Ultrametric Anal. Appl. 1(1), 1–17 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    V. S. Vladimirov and Ya. I. Volovich, “Nonlinear dynamics equation in p-adic string theory,” Teor. Mat. Fiz. 138(3), 355–368 (2004) [Theor. Math. Phys. 138, 297–309 (2004)]; arXiv:math-ph/0306018.CrossRefMathSciNetGoogle Scholar
  13. 13.
    I. Ya. Aref’eva, “Nonlocal string tachyon as a model for cosmological dark energy,” in p-Adic Mathematical Physics (Am. Inst. Phys., Melville, 2006), AIP Conf. Proc. 826, pp. 301–311; arXiv: astro-ph/0410443.Google Scholar
  14. 14.
    I. Aref’eva, “Puzzles with tachyon in SSFT and cosmological applications,” Prog. Theor. Phys. Suppl. 188, 29–40 (2011); arXiv: 1101.5338 [hep-th].CrossRefzbMATHGoogle Scholar
  15. 15.
    I. Ya. Aref’eva and I. V. Volovich, “Cosmological daemon,” J. High Energy Phys., No. 8, 102 (2011); arXiv: 1103.0273 [hep-th].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations