Tables of integrals for complex-valued functions of p-adic arguments

  • V. S. Vladimirov


Generalize Function STEKLOV Institute Haar Measure Inversion Formula Multiplicative Group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. I. Borevich and I. R. Shafarevich, Number Theory (Nauka, Moscow, 1985) [in Russian].MATHGoogle Scholar
  2. 2.
    V. C. Vladimirov, I. V. Volovich, and E. I. Zelenov, Mathematical Physics (Nauka, Moscow, 1994) [in Russian].Google Scholar
  3. 3.
    V. C. Vladimirov, I. V. Volovich, and E. I. Zelenov, “Spectral theory in p-adic quantum mechanics and representation theory,” Math. USSR-Izv. 36(2), 281–309 (1990).CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ph. Ruelle, E. Thiran, D. Verstegen, and J. Weyers, “Quantum mechanics on p-adic fields,” J. Math. Phys. 30(12), 2854–2874 (1989).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Ph. Ruelle, E. Thiran, and D. Verstegen, “Adelic string and superstring amplitudes,” Mod. Phys. Lett. A 4(18), 1745–1752 (1989).CrossRefMathSciNetGoogle Scholar
  6. 6.
    P. H. Frampton, “Retrospective on p-adic string theory,” Proc. Steklov Inst. Math. 203, 245–248 (1995).MathSciNetGoogle Scholar
  7. 7.
    I. M. Gelfand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation Theory and Automorphic Functions (Nauka, Moscow, 1966) [in Russian].Google Scholar
  8. 8.
    M. H. Taibleson, Fourier Analysis on Local Fields (Princeton Univ. Press, Princeton, 1975).MATHGoogle Scholar
  9. 9.
    V. A. Smirnov, “Renormalization in p-adic quantum mechanics,” Modern Phys. Lett. A. 6(15), 1421–1427 (1991).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    V. A. Smirnov, “Calculation of general p-adic Feynmann amplitude,” Commun. Math Phys. 149, 623–636 (1992).CrossRefMATHGoogle Scholar
  11. 11.
    V. S. Vladimirov, “On the Freund-Witten adelic formula for Veneziano amplitudes,” Lett. Math. Phys. 27, 123–131 (1993).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    V. S. Vladimirov, “Freund-Witten adelic formulae for Veneziano and Virasoro-Shapiro amplitudes,” Russ. Math. Surveys 48(6), 1–39 (1993).CrossRefGoogle Scholar
  13. 13.
    V. S. Vladimirov, “Generalized functions over the field of p-adic numbers,” Russ. Math. Surveys 43(5), 17–53 (1988).CrossRefGoogle Scholar
  14. 14.
    S. V. Kozyrev, “Wavelet theory as p-adic spectral analysis,” Izvestiya: Math. 66(2), 367–376 (2002).CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    V. S. Vladimirov, “On the spectrum of some pseudo-differential operators over the field of p-adic numbers,” Leningrad Math. J. 2(6), 1261–1278 (1990).MATHGoogle Scholar
  16. 16.
    V. S. Vladimirov, “On spectral properties of p-adic pseudo-differential operators of Schrödinger type,” Russ. Acad. Sci. Izvestiya Math. 41(1), 55–73 (1993).CrossRefGoogle Scholar
  17. 17.
    A. N. Kochubei, “Additive and multiplicative fractional differentiations over the field of p-adic numbers,” in p-Adic Functional Analysis, Lect. Notes Pure and Appl. Math. 192 (Marcel Dekker, New York, 1997), pp. 275–280.Google Scholar
  18. 18.
    A. Kh. Bikulov, “Investigation of p-adic Green’s function,” Theor. Math. Phys. 87(3), 600–610 (1991).CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    A. Kh. Bikulov and I. V. Volovich, “p-Adic Brownian motion,” Izvestiya: Math. 61(3), 537–552 (1997).CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    V. S. Vladimirov and I. V. Volovich, “p-Adic quantum mechanics,” Commun. Math. Phys. 123, 659–676 (1989).CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    B. G. Dragović, Private communication.Google Scholar
  22. 22.
    E. I. Zelenov, “p-Adic quantum mechanics for p = 2,” Theor. Math. Phys. 80(2), 848–856 (1989).CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Y. Meurice, “Quantum mechanics with p-adic numbers,” Int. J. Modern Phys. A 4(19), 5133–5147 (1989).CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    V. S. Vladimirov, “Adelic formulas for gamma- and beta-functions in algebraic number fields,” in p-Adic Functional Analysis, Lect. Notes Pure and Appl. Math. 192 (Marcel Dekker, New York, 1997), pp. 383–395.Google Scholar
  25. 25.
    M. D. Missarov, “Renormalization group and renormalization theory in p-adic and adelic scalar models,” in Dynamical Systems and Statistical Mechanics, Adv. Soviet Math. 3 (Amer. Math. Soc., Providence, R.I., 1991), pp. 143–164.Google Scholar
  26. 26.
    A. Kh. Bikulov, Private communication.Google Scholar
  27. 27.
    E. Yu. Lerner and M. D. Missarov, “p-Adic Feynman and string amplitudes,” Commun. Math. Phys. 121, 35–48 (1989).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. S. Vladimirov
    • 1
  1. 1.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations