Advertisement

Proceedings of the Steklov Institute of Mathematics

, Volume 283, Issue 1, pp 149–164 | Cite as

On weighted Hardy inequalities in mixed norms

  • D. V. Prokhorov
  • V. D. Stepanov
Article

Abstract

A characterization of weighted Hardy inequalities in mixed norms on a half-axis is obtained.

Keywords

STEKLOV Institute Hardy Inequality Liouville Operator Steklov Inst Morrey Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Burenkov, A. Gogatishvili, V. S. Guliev, and R. Ch. Mustafayev, “Boundedness of the fractional maximal operator in local Morrey-type spaces,” Complex Var. Elliptic Eqns. 55(8–10), 739–758 (2010).CrossRefMATHGoogle Scholar
  2. 2.
    V. I. Burenkov, A. Gogatishvili, V. S. Guliev, and R. Ch. Mustafayev, “Boundedness of the Riesz potential in local Morrey-type spaces,” Potential Anal. 35(1), 67–87 (2011).CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    A. Gogatishvili, R. Ch. Mustafayev, and L.-E. Persson, “Some new iterated Hardy-type inequalities,” J. Funct. Spaces Appl., 734194 (2012).Google Scholar
  4. 4.
    D. V. Prokhorov and V. D. Stepanov, “Weighted estimates for the Riemann-Liouville operators and applications,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 243, 289–312 (2003) [Proc. Steklov Inst. Math. 243, 278–301 (2003)].MathSciNetGoogle Scholar
  5. 5.
    A. Gogatishvili, B. Opic, and L. Pick, “Weighted inequalities for Hardy-type operators involving suprema,” Collect. Math. 57(3), 227–255 (2006).MATHMathSciNetGoogle Scholar
  6. 6.
    D. V. Prokhorov, “Inequalities for Riemann-Liouville operator involving suprema,” Collect. Math. 61(3), 263–276 (2010).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    D. V. Prokhorov, “Lorentz norm inequalities for the Hardy operator involving suprema,” Proc. Am. Math. Soc. 140(5), 1585–1592 (2012).CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    D. V. Prokhorov and V. D. Stepanov, “On supremum operators,” Dokl. Akad. Nauk 439(1), 28–29 (2011) [Dokl. Math. 84 (1), 457–458 (2011)].MathSciNetGoogle Scholar
  9. 9.
    V. D. Stepanov, “On a supremum operator,” in Spectral Theory, Function Spaces and Inequalities: New Technique and Recent Trends (Springer, Berlin, 2012), Oper. Theory: Adv. Appl. 219, pp. 233–242.CrossRefGoogle Scholar
  10. 10.
    M. L. Gol’dman, H. P. Heinig, and V. D. Stepanov, “On the principle of duality in Lorentz spaces,” Can. J. Math. 48(5), 959–979 (1996).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    J. S. Bradley, “Hardy inequalities with mixed norms,” Can. Math. Bull. 21, 405–408 (1978).CrossRefMATHGoogle Scholar
  12. 12.
    G. Sinnamon and V. D. Stepanov, “The weighted Hardy inequality: New proofs and the case p = 1,” J. London Math. Soc., Ser. 2, 54(1), 89–101 (1996).CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    V. Kabaila, “Imbedding of spaces of sequences,” Lith. Math. J. 21(3), 224–226 (1981).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    G. Bennett, “Some elementary inequalities. III,” Q. J. Math. Oxford, Ser. 2, 42, 149–174 (1991).CrossRefMATHGoogle Scholar
  15. 15.
    M. L. Goldman, “Sharp estimates for the norms of Hardy-type operators on the cones of quasimonotone functions,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 232, 115–143 (2001) [Proc. Steklov Inst. Math. 232, 109–137 (2001)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Computing CenterFar Eastern Branch of the Russian Academy of SciencesKhabarovskRussia
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations