Advertisement

Well-posedness of parabolic equations containing hysteresis with diffusive thresholds

  • Pavel GurevichEmail author
  • Dmitrii Rachinskii
Article

Abstract

We study complex systems arising, in particular, in population dynamics, developmental biology, and bacterial metabolic processes, in which each individual element obeys a relatively simple hysteresis law (a non-ideal relay). Assuming that hysteresis thresholds fluctuate, we consider the arising reaction-diffusion system. In this case, the spatial variable corresponds to the hysteresis threshold. We describe the collective behavior of such a system in terms of the Preisach operator with time-dependent measure which is a part of the solution for the whole system. We prove the well-posedness of the system and discuss the long-term behavior of solutions.

Keywords

Lactose Parabolic Equation STEKLOV Institute Neumann Boundary Condition Switching Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. W. Alt, “On the thermostat problem,” Control Cybern. 14, 171–193 (1985).MathSciNetGoogle Scholar
  2. 2.
    A. Ashyralyev and P. E. Sobolevskii, Well-Posedness of Parabolic Difference Equations (Birkhäuser, Basel, 1994).CrossRefGoogle Scholar
  3. 3.
    R. J. Aumann and M. B. Maschler, Repeated Games with Incomplete Information (MIT Press, Cambridge, MA, 1995).zbMATHGoogle Scholar
  4. 4.
    A. Becskei, B. Séraphin, and L. Serrano, “Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion,” EMBO J. 20, 2528–2535 (2001).CrossRefGoogle Scholar
  5. 5.
    S. Benzer, “Induced synthesis of enzymes in bacteria analyzed at the cellular level,” Biochim. Biophys. Acta 11, 383–395 (1953).CrossRefGoogle Scholar
  6. 6.
    M. Cohn and K. Horbita, “Inhibition by glucose of the induced synthesis of the β-galactoside-enzyme system of Escherichia coli. Analysis of maintenance,” J. Bacteriol. 78, 601–612 (1959).Google Scholar
  7. 7.
    M. Cohn and K. Horbita, “Analysis of the differentiation and of the heterogeneity within a population of Eschericia coli undergoing induced β-galactosidase synthesis,” J. Bacteriol. 78, 613–623 (1959).Google Scholar
  8. 8.
    M. Delbrück, “Discussion,” in Unités biologiques douées de continuité génétique (CNRS, Paris, 1949), pp. 33–35.Google Scholar
  9. 9.
    D. Dubnau and R. Losick, “Bistability in bacteria,” Mol. Microbiol. 61, 564–572 (2006).CrossRefGoogle Scholar
  10. 10.
    G. Friedman, P. Gurevich, S. McCarthy, and D. Rachinskii, “Switching behaviour of two-phenotype bacteria in varying environment,” J. Phys.: Conf. Ser. (in press).Google Scholar
  11. 11.
    T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic toggle switch in Escherichia coli,” Nature 403, 339–342 (2000).CrossRefGoogle Scholar
  12. 12.
    P. Gurevich and S. Tikhomirov, “Uniqueness of transverse solutions for reaction-diffusion equations with spatially distributed hysteresis,” Nonlinear Anal., Theory Methods Appl. 75, 6610–6619 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    F. C. Hoppensteadt and W. Jäger, “Pattern formation by bacteria,” in Biological Growth and Spread (Springer, Berlin, 1980), Lect. Notes Biomath. 38, pp. 68–81.CrossRefGoogle Scholar
  14. 14.
    A. M. Il’in and B. A. Markov, “Nonlinear diffusion equation and Liesegang rings,” Dokl. Akad. Nauk 440(2), 164–167 (2011) [Dokl. Math. 84 (2), 730–733 (2011)].MathSciNetGoogle Scholar
  15. 15.
    J. Kopfová, “Hysteresis in biological models,” J. Phys.: Conf. Ser. 55, 130–134 (2006).Google Scholar
  16. 16.
    M. A. Krasnosel’skii and A. V. Pokrovskii, Systems with Hysteresis (Springer, Berlin, 1989).CrossRefzbMATHGoogle Scholar
  17. 17.
    E. Kussell and S. Lieber, “Phenotypic diversity, population growth, and information in fluctuating environments,” Science 309, 2075–2078 (2005).CrossRefGoogle Scholar
  18. 18.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasi-linear Equations of Parabolic Type (Nauka, Moscow, 1967; Am. Math. Soc., Providence, RI, 1968).Google Scholar
  19. 19.
    V. P. Mikhailov, Partial Differential Equations (Nauka, Moscow, 1983) [in Russian].Google Scholar
  20. 20.
    J. Monod, “From enzymatic adaptation to allosteric transitions,” Science 154, 475–483 (1966).CrossRefGoogle Scholar
  21. 21.
    A. Novick and M. Weiner, “Enzyme induction as an all-or-none phenomenon,” Proc. Natl. Acad. Sci. USA 43, 553–566 (1957).CrossRefGoogle Scholar
  22. 22.
    E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shraiman, and A. van Oudenaarden, “Multistability in the lactose utilization network of Escherichia coli,” Nature 427, 737–740 (2004).CrossRefGoogle Scholar
  23. 23.
    J. R. Pomerening, E. D. Sontag, and J. E. Ferrell, Jr., “Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2,” Nature Cell Biol. 5, 346–351 (2003).CrossRefGoogle Scholar
  24. 24.
    F. Rothe, Global Solutions of Reaction-Diffusion Systems (Springer, Berlin, 1984).zbMATHGoogle Scholar
  25. 25.
    J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, New York, 1994).CrossRefzbMATHGoogle Scholar
  26. 26.
    S. Spiegelman and W. F. DeLorenzo, “Substrate stabilization of enzyme-forming capacity during the segregation of a heterozygote,” Proc. Natl. Acad. Sci. USA 38, 583–592 (1952).CrossRefGoogle Scholar
  27. 27.
    M. Thattai and A. van Oudenaarden, “Stochastic gene expression in fluctuating environments,” Genetics 167, 523–530 (2004).CrossRefGoogle Scholar
  28. 28.
    A. Visintin, “Evolution problems with hysteresis in the source term,” SIAM J. Math. Anal. 17, 1113–1138 (1986).CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Ö. Winge and C. Roberts, “Inheritance of enzymatic characters in yeasts, and the phenomenon of long-term adaptation,” C. R. Trav. Lab. Carlsberg, Sér. Physiol. 24, 263–315 (1948).Google Scholar
  30. 30.
    D. M. Wolf and A. P. Arkin, “Motifs, modules and games in bacteria,” Curr. Opin. Microbiol. 6, 125–134 (2003).CrossRefGoogle Scholar
  31. 31.
    D. M. Wolf, V. V. Vazirani, and A. P. Arkin, “Diversity in times of adversity: probabilistic strategies in microbial survival games,” J. Theor. Biol. 234, 227–253 (2005).CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Freie Universität BerlinBerlinGermany
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia
  3. 3.Department of Mathematical SciencesUniversity of Texas at DallasRichardsonUSA
  4. 4.Department of Applied MathematicsUniversity College CorkCorkIreland

Personalised recommendations