Evolution of branching processes in a random environment

Article

Abstract

This review paper presents the known results on the asymptotics of the survival probability and limit theorems conditioned on survival of critical and subcritical branching processes in independent and identically distributed random environments. This is a natural generalization of the time-inhomogeneous branching processes. The key assumptions of the family of population models in question are nonoverlapping generations and discrete time. The reader should be aware of the fact that there are many very interesting papers covering other issues in the theory of branching processes in random environments which are not mentioned here.

Keywords

Limit Theorem STEKLOV Institute Random Environment Annealed Approach Subcritical Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Afanasyev, “Limit theorems for a conditional random walk and some applications,” Cand. Sci. (Phys.-Math.) Dissertation (Moscow State Univ., Moscow, 1980).Google Scholar
  2. 2.
    V. I. Afanasyev, “Limit theorem for the critical branching process in random environment,” Diskret. Mat. 5(1), 45–58 (1993).MathSciNetGoogle Scholar
  3. 3.
    V. I. Afanasyev, “A new theorem for a critical branching process in random environment,” Diskret. Mat. 9(3), 52–67 (1997) [Discrete Math. Appl. 7, 497–514 (1997)]CrossRefGoogle Scholar
  4. 4.
    V. I. Afanasyev, “Limit theorems for a moderately subcritical branching process in a random environment,” Diskret. Mat. 10(1), 141–157 (1998) [Discrete Math. Appl. 8, 35–52 (1998)].CrossRefGoogle Scholar
  5. 5.
    V. I. Afanasyev, “On the maximum of a critical branching process in a random environment,” Diskret. Mat. 11(2), 86–102 (1999) [Discrete Math. Appl. 9, 267–284 (1999)].MathSciNetCrossRefGoogle Scholar
  6. 6.
    V. I. Afanasyev, “Limit theorems for intermediately subcritical and strongly subcritical branching processes in a random environment,” Diskret. Mat. 13(1), 132–157 (2001) [Discrete Math. Appl. 11, 105–131 (2001)].CrossRefGoogle Scholar
  7. 7.
    V. I. Afanasyev, “A functional limit theorem for a critical branching process in random environment,” Diskret. Mat. 13(4), 73–91 (2001) [Discrete Math. Appl. 11, 587–606 (2001)].CrossRefGoogle Scholar
  8. 8.
    V. I. Afanasyev, C. Böinghoff, G. Kersting, and V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment,” J. Theor. Probab. 25, 703–732 (2012).CrossRefMATHGoogle Scholar
  9. 9.
    V. I. Afanasyev, C. Böinghoff, G. Kersting, and V. A. Vatutin, “Conditional limit theorems for intermediately subcritical branching processes in random environment,” Ann. Inst. Henri Poincaré, Probab. Stat. (in press); arXiv: 1108.2127 [math.PR].Google Scholar
  10. 10.
    V. I. Afanasyev, J. Geiger, G. Kersting, and V. A. Vatutin, “Criticality for branching processes in random environment,” Ann. Probab. 33, 645–673 (2005).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    V. I. Afanasyev, J. Geiger, G. Kersting, and V. A. Vatutin, “Functional limit theorems for strongly subcritical branching processes in random environment,” Stoch. Processes Appl. 115, 1658–1676 (2005).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    S. Albeverio and M. V. Kozlov, “On the recurrence and transience of state-dependent branching processes in random environment,” Teor. Veroyatn. Primen. 48(4), 641–660 (2003) [Theory Probab. Appl. 48, 575–591 (2004)].MathSciNetCrossRefGoogle Scholar
  13. 13.
    K. B. Athreya and S. Karlin, “On branching processes with random environments. I: Extinction probabilities,” Ann. Math. Stat. 42, 1499–1520 (1971).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    K. B. Athreya and S. Karlin, “Branching processes with random environments. II: Limit theorems,” Ann. Math. Stat. 42, 1843–1858 (1971).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    K. B. Athreya and P. E. Ney, Branching Processes (Springer, Berlin, 1972).CrossRefMATHGoogle Scholar
  16. 16.
    N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation (Cambridge Univ. Press, Cambridge, 1987).CrossRefMATHGoogle Scholar
  17. 17.
    M. Birkner, J. Geiger, and G. Kersting, “Branching processes in random environment-A view on critical and subcritical cases,” in Interacting Stochastic Systems, Ed. by J.-D. Deuschel and A. Greven (Springer, Berlin, 2005), pp. 269–291.CrossRefGoogle Scholar
  18. 18.
    K. A. Borovkov and V. A. Vatutin, “Reduced critical branching processes in random environment,” Stoch. Processes Appl. 71, 225–240 (1997).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    C. Böinghoff, E. E. Dyakonova, G. Kersting, and V. A. Vatutin,, “Branching processes in random environment which extinct at a given moment,” Markov Processes Relat. Fields 16, 329–350 (2010).MATHGoogle Scholar
  20. 20.
    F. M. Dekking, “On the survival probability of a branching process in a finite state i.i.d. environment,” Stoch. Processes Appl. 27, 151–157 (1988).MathSciNetCrossRefGoogle Scholar
  21. 21.
    R. A. Doney, “Conditional limit theorems for asymptotically stable random walks,” Z. Wahrscheinlichkeitstheor. Verwandte Geb. 70, 351–360 (1985).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    R. A. Doney, “Spitzer’s condition and ladder variables in random walks,” Probab. Theory Relat. Fields 101, 577–580 (1995).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    J. C. D’Souza and B. M. Hambly, “On the survival probability of a branching process in a random environment,” Adv. Appl. Probab. 29, 38–55 (1997).MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    R. Durrett, “Conditioned limit theorems for some null recurrent Markov processes,” Ann. Probab. 6, 798–828 (1978).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    E. E. Dyakonova, “Asymptotic behaviour of the probability of non-extinction for a multi-type branching process in a random environment,” Diskret. Mat. 11(1), 113–128 (1999) [Discrete Math. Appl. 9, 119–136 (1999)].MathSciNetCrossRefGoogle Scholar
  26. 26.
    E. E. Dyakonova, “On multitype branching processes in a random environment,” J. Math. Sci. 111(3), 3537–3540 (2002).MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    E. E. Dyakonova, “Critical multitype branching processes in a random environment,” Diskret. Mat. 19(4), 23–41 (2007) [Discrete Math. Appl. 17, 587–606 (2007)].CrossRefGoogle Scholar
  28. 28.
    E. Dyakonova, “On subcritical multi-type branching process in random environment,” in Algorithms, Trees, Combinatorics and Probabilities: Proc. Fifth Colloquium on Mathematics and Computer Science (DMTCS, Nancy, 2008), pp. 401–408.Google Scholar
  29. 29.
    E. E. Dyakonova, J. Geiger, and V. A. Vatutin, “On the survival probability and a functional limit theorem for branching processes in random environment,” Markov Processes Relat. Fields 10, 289–306 (2004).MathSciNetMATHGoogle Scholar
  30. 30.
    W. Feller, An Introduction to Probability Theory and Its Applications (J. Wiley & Sons, New York, 1971), Vol. 2.MATHGoogle Scholar
  31. 31.
    K. Fleischmann and R. Siegmund-Schultze, “The structure of reduced critical Galton-Watson processes,” Math. Nachr. 79, 233–241 (1977).MathSciNetCrossRefGoogle Scholar
  32. 32.
    K. Fleischmann and V. A. Vatutin, “Reduced subcritical Galton-Watson processes in a random environment,” Adv. Appl. Probab. 31, 88–111 (1999).MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    J. Geiger and G. Kersting, “The survival probability of a critical branching process in random environment,” Teor. Veroyatn. Primen. 45(3), 607–615 (2000) [Theory Probab. Appl. 45, 517–525 (2001)].MathSciNetCrossRefGoogle Scholar
  34. 34.
    J. Geiger, G. Kersting, and V. A. Vatutin, “Limit theorems for subcritical branching processes in random environment,” Ann. Inst. Henri Poincaré, Probab. Stat. 39, 593–620 (2003).MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Y. Guivarc’h and Q. Liu, “Propriétés asymptotiques des processus de branchement en environnement aléatoire,” C. R. Acad. Sci. Paris, Ser. 1: Math. 332, 339–344 (2001).MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    N. Kaplan, “Some results about multidimensional branching processes with random environments,” Ann. Probab. 2, 441–455 (1974).CrossRefMATHGoogle Scholar
  37. 37.
    H. Kesten and F. Spitzer, “Convergence in distribution of products of random matrices,” Z. Wahrscheinlichkeitstheor. Verwandte Geb. 67, 363–386 (1984).MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    M. V. Kozlov, “On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment,” Teor. Veroyatn. Primen. 21(4), 813–825 (1976) [Theory Probab. Appl. 21, 791–804 (1977)].Google Scholar
  39. 39.
    M. V. Kozlov, “A conditional function limit theorem for a critical branching process in a random medium,” Dokl. Akad. Nauk 344(1), 12–15 (1995) [Dokl. Math. 52, 164–167 (1995)].MathSciNetGoogle Scholar
  40. 40.
    Q. Liu, “On the survival probability of a branching process in a random environment,” Ann. Inst. Henri Poincaré, Probab. Stat. 32, 1–10 (1996).Google Scholar
  41. 41.
    Sevastyanov B.A., Branching Processes (Nauka, Moscow, 1971) [in Russian].Google Scholar
  42. 42.
    F. Spitzer, Principles of Random Walk (D. Van Nostrand, Princeton, NJ, 1964).CrossRefMATHGoogle Scholar
  43. 43.
    W. L. Smith and W. E. Wilkinson, “On branching processes in random environments,” Ann. Math. Stat. 40, 814–827 (1969).MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    D. Tanny, “Limit theorems for branching processes in a random environment,” Ann. Probab. 5, 100–116 (1977).MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    D. Tanny, “On multitype branching processes in a random environment,” Adv. Appl. Probab. 13, 464–497 (1981).MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    V. A. Vatutin, “Reduced branching processes in random environment: The critical case,” Teor. Veroyatn. Primen. 47(1), 21–38 (2002) [Theory Probab. Appl. 47, 99–113 (2003)].MathSciNetCrossRefGoogle Scholar
  47. 47.
    V. A. Vatutin, “Limit theorem for an intermediate subcritical branching process in a random environment,” Teor. Veroyatn. Primen. 48(3), 453–465 (2003) [Theory Probab. Appl. 48, 481–492 (2004)].MathSciNetCrossRefGoogle Scholar
  48. 48.
    V. A. Vatutin and E. E. Dyakonova, “Critical branching processes in random environment: the probability of extinction at a given moment,” Diskret. Mat. 9(4), 100–126 (1997) [Discrete Math. Appl. 7, 469–496 (1997)].MathSciNetCrossRefGoogle Scholar
  49. 49.
    V. A. Vatutin and E. E. Dyakonova, “Reduced branching processes in random environment,” in Mathematics and Computer Science. II: Algorithms, Trees, Combinatorics and Probabilities, Ed. by B. Chauvin, P. Flajolet, D. Gardy, and A. Mokkadem (Birkhäuser, Basel, 2002), pp. 455–467.Google Scholar
  50. 50.
    V. A. Vatutin and E. E. Dyakonova, “Galton-Watson branching processes in a random environment. I: Limit theorems,” Teor. Veroyatn. Primen. 48(2), 274–300 (2003) [Theory Probab. Appl. 48, 314–336 (2004)].MathSciNetCrossRefGoogle Scholar
  51. 51.
    V. A. Vatutin and E. E. Dyakonova, “Galton-Watson branching processes in a random environment. II: Finite-dimensional distributions,” Teor. Veroyatn. Primen. 49(2), 231–268 (2004) [Theory Probab. Appl. 49, 275–309 (2005)].MathSciNetCrossRefGoogle Scholar
  52. 52.
    V. Vatutin and E. Dyakonova, “Yaglom type limit theorem for branching processes in random environment,” in Mathematics and Computer Science. III: Algorithms, Trees, Combinatorics and Probabilities, Ed. by M. Drmota, P. Flajolet, D. Gardy, and B. Gittenberger (Birkhäuser, Basel, 2004), pp. 375–385.CrossRefGoogle Scholar
  53. 53.
    V. A. Vatutin and E. E. Dyakonova, “Branching processes in a random environment and bottlenecks in the evolution of populations,” Teor. Veroyatn. Primen. 51(1), 22–46 (2006) [Theory Probab. Appl. 51, 189–210 (2007)].MathSciNetCrossRefGoogle Scholar
  54. 54.
    V. A. Vatutin and E. E. Dyakonova, “Limit theorems for reduced branching processes in a random environment,” Teor. Veroyatn. Primen. 52(2), 271–300 (2007) [Theory Probab. Appl. 52, 277–302 (2008)].MathSciNetCrossRefGoogle Scholar
  55. 55.
    V. A. Vatutin and E. E. Dyakonova, “Waves in reduced branching processes in a random environment,” Teor. Veroyatn. Primen. 53(4), 665–683 (2008) [Theory Probab. Appl. 53, 679–695 (2009)].MathSciNetCrossRefGoogle Scholar
  56. 56.
    V. A. Vatutin and E. E. Dyakonova, “Asymptotic properties of multitype critical branching processes evolving in a random environment,” Diskret. Mat. 22(2), 22–40 (2010) [Discrete Math. Appl. 20, 157–177 (2010)].MathSciNetCrossRefGoogle Scholar
  57. 57.
    V. A. Vatutin and A. E. Kyprianou, “Branching processes in random environment die slowly,” in Algorithms, Trees, Combinatorics and Probabilities: Proc. Fifth Colloquium on Mathematics and Computer Science (DMTCS, Nancy, 2008), pp. 379–400.Google Scholar
  58. 58.
    V. A. Vatutin and V. I. Wachtel, “Sudden extinction of a critical branching process in a random environment,” Teor. Veroyatn. Primen. 54(3), 417–438 (2009) [Theory Probab. Appl. 54, 466–484 (2010)].CrossRefGoogle Scholar
  59. 59.
    V. A. Vatutin and A. M. Zubkov, “Branching processes. II,” J. Sov. Math. 67(6), 3407–3485 (1993).MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    E. W. Weissner, “Multitype branching processes in random environments,” J. Appl. Probab. 8, 17–31 (1971).MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    A. M. Zubkov, “Limiting distributions of the distance to the closest common ancestor,” Teor. Veroyatn. Primen. 20(3), 614–623 (1975) [Theory Probab. Appl. 20, 602–612 (1976)].MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Mathematical SciencesChalmers University of Technology and University of GothenburgGothenburgSweden

Personalised recommendations