Advertisement

Geometry of neighborhoods of singular trajectories in problems with multidimensional control

  • M. I. Zelikin
  • L. V. Lokutsievskiy
  • R. Hildebrand
Article

Abstract

It is shown that the order of a singular trajectory in problems with multidimensional control is described by a flag of linear subspaces in the control space. In terms of this flag, we construct necessary conditions for the junction of a nonsingular trajectory with a singular one in affine control systems. We also give examples of multidimensional problems in which the optimal control has the form of an irrational winding of a torus that is passed in finite time.

Keywords

Hamiltonian System STEKLOV Institute Optimal Trajectory Local Order Pontryagin Maximum Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. S. Goh, “The Second Variation for the Singular Bolza Problem,” SIAM J. Control 4, 127–168 (1966).Google Scholar
  2. 2.
    A. J. Krener, “The High Order Maximal Principle and Its Application to Singular Extremals,” SIAM J. Control Optim. 15, 256–293 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    H. J. Kelley, R. E. Kopp, and H. G. Moyer, “Singular Extremals,” in Topics in Optimization (Academic, New York, 1967), pp. 63–101.CrossRefGoogle Scholar
  4. 4.
    R. M. Lewis, “Definitions of Order and Junction Conditions in Singular Optimal Control Problems,” SIAM J. Control Optim. 18, 21–32 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    L. V. Lokutsievskiy, “Optimal Probabilistic Search,” Mat. Sb. 202(5), 77–100 (2011) [Sb. Math. 202, 697–719 (2011)].MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. I. Zelikin and V. F. Borisov, Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering (Birkhäuser, Boston, 1994).zbMATHGoogle Scholar
  7. 7.
    A. A. Agrachev and R. V. Gamkrelidze, “A Second Order Optimality Principle for a Time-Optimal Problem,” Mat. Sb. 100(4), 610–643 (1976) [Math. USSR, Sb. 29, 547–576 (1976)].MathSciNetGoogle Scholar
  8. 8.
    A. A. Milyutin, A. E. Ilyutovich, N. P. Osmolovskii, and S. V. Chukanov, Optimal Control in Linear Systems (Nauka, Moscow, 1993) [in Russian].zbMATHGoogle Scholar
  9. 9.
    O. Zariski and P. Samuel, Commutative Algebra (D. van Nostrand, Princeton, 1958; Inostrannaya Literatura, Moscow, 1963), Vol. 1.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. I. Zelikin
    • 1
  • L. V. Lokutsievskiy
    • 1
  • R. Hildebrand
    • 2
  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  2. 2.Laboratoire Jean KuntzmannUniversité Joseph FourierGrenoble cedex 09France

Personalised recommendations