Advertisement

Classical and nonclassical discontinuities and their structures in nonlinear elastic media with dispersion and dissipation

  • A. G. Kulikovskii
  • A. P. Chugainova
Article

Keywords

Shock Wave STEKLOV Institute Shock Adiabat Arbitrary Discontinuity Riemann Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Ya. Galin, “Shock Waves in Media with Arbitrary Equations of State,” Soviet Physics. Dokl. 119(3), 244–247 (1958).MathSciNetGoogle Scholar
  2. 2.
    O. A. Oleinik, “Construction of a Generalized Solution of the Cauchy Problem for a Quasi-linear Equation of First Order by the Introduction of ‘Vanishing Viscosity’,” Am. Math. Soc., Transl., II. Ser. 33, 277–283 (1963)Google Scholar
  3. 3.
    G. Ja. Galin, “A Theory of Shock Waves,” Soviet Physics. Dokl. 4, 757–760 (1960).MathSciNetGoogle Scholar
  4. 4.
    I. M. Gel’fand, “Some Problems in the Theory of Quasilinear Equations,” Transl., Ser. 2, Am. Math. Soc. 29, 295–381 (1963).Google Scholar
  5. 5.
    Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980) [in Russian].Google Scholar
  6. 6.
    A. A. Barmin and A. G. Kulikovskii, “On Shock Waves Ionizing a Gas in an Electromagnetic Field,” Dokl. Akad. Nauk SSSR 178(1), 55–58 (1968).Google Scholar
  7. 7.
    A. G. Kulikovskii, “Surfaces of Discontinuity Separating Two Perfect Media of Different Properties: Recombination Waves in Magnetohydrodynamics,” J. Appl. Math. Mech. 32(6), 1145–1152 (1968).CrossRefGoogle Scholar
  8. 8.
    A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems in the Numerical Solution of Hyperbolic Systems of Equations (Fizmatlit, Moscow, 2001) [in Russian].Google Scholar
  9. 9.
    S. K. Godunov, “Non-unique ‘Blurrings’ of Discontinuities in Solutions of Quasilinear Systems,” Soviet Math. Dokl. 2, 43–44 (1961).MathSciNetzbMATHGoogle Scholar
  10. 10.
    V. F. D’yachenko, “Cauchy’s Problem for Quasi-linear Systems,” Sov. Math., Dokl. 2, 7–8 (1961).zbMATHGoogle Scholar
  11. 11.
    N. D. Vvedenskaya, “An Example of Nonuniqueness of a Generalized Solution of a Quasi-linear System of Equations,” Sov. Math., Dokl. 2, 89–90 (1961).zbMATHGoogle Scholar
  12. 12.
    V. A. Levin, V. V. Markov, and S. F. Osinkin, “Initiation of Detonation in Hydrogen-Air Mixture by Explosion of a Spherical TNT Charge,” Combustion, Explosion, and Shock Waves 31(2), 207–210 (1995).CrossRefGoogle Scholar
  13. 13.
    V. A. Levin, V. V. Markov, and S. F. Osinkin, “Modeling Initiation of Detonation in a Combustible Gas Mixture by an Electric Discharge,” Khim. Fiz. 3(4), 611–613 (1984).Google Scholar
  14. 14.
    V. A. Levin, V. V. Markov, and S. F. Osinkin, “Detonation Wave Reinitiation Using a Disintegrating Shell,” Dokl. Phys. 42(1), 25–27 (1997).Google Scholar
  15. 15.
    A. A. Barmin and V. S. Uspenskii, “Development of Pulsation Regimes in One-dimensional Unsteady MHD Flows with Switching off of the Electrical Conductivity,” Fluid Dynamics 21(4), 604–610 (1986).CrossRefGoogle Scholar
  16. 16.
    D. R. Bland, Nonlinear Dynamic Elasticity (Toronto, Waltham, 1969; Mir, Moscow, 1972).Google Scholar
  17. 17.
    L. I. Sedov, Continuum Mechanics (Nauka, Moscow, 1994), Vol. 2 [in Russian].zbMATHGoogle Scholar
  18. 18.
    A. G. Kulikovskii and G. A. Lyubimov, Magnetic Hydrodynamics (Logos, Moscow, 2005) [in Russian].Google Scholar
  19. 19.
    A. G. Kulikovskii and E. I. Sveshnikova, Nonlinear Waves in Elastic Media (Moskovskii Litsei, Moscow, 1998) [in Russian].Google Scholar
  20. 20.
    P. D. Lax, “Hyperbolic Systems of Conservation Laws,” Commun. Pure Appl. Math. 10, 537–566 (1957).MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Nauka, Moscow, 1978) [in Russian].Google Scholar
  22. 22.
    A. G. Kulikovskii and A. P. Chugainova, “On the Stability of Quasi-transverse Shock Waves in Anisotropic Elastic Media,” J. Appl. Math. Mech. 64(6), 981–986 (2000).MathSciNetCrossRefGoogle Scholar
  23. 23.
    N. S. Bakhvalov and M. E. Eglit, “Effective Equations with Dispersion for Waves Propagating in Periodic Media,” Dokl. Math. 61(1), 1–4 (2000).Google Scholar
  24. 24.
    J.W. S. Rayleigh, The Theory of Sound, 2nd ed. (Macmillan, London, 1896; Gostekhizdat, Moscow, 1955).zbMATHGoogle Scholar
  25. 25.
    A. G. Kulikovskii, “The Possible Influence of Oscillations in a Discontinuity Structure on the Set of Admissible Discontinuities,” Dokl. Akad. Nauk SSSR 275(6), 1349–1352 (1984).MathSciNetGoogle Scholar
  26. 26.
    A. G. Kulikovskij, “Small Amplitude Nonlinear Waves in an Anisotropic Elastic Body,” Proc. Steklov Inst. Math. 211, 262–274 (1995).Google Scholar
  27. 27.
    A. G. Kulikovskii, E. I. Sveshnikova, and A. P. Chugainova, “Some Problems in the Nonlinear Dynamic Theory of Elasticity,” Proc. Steklov Inst. Math., No. 4 (251), 165–191 (2005).Google Scholar
  28. 28.
    A. G. Kulikovskii, A. P. Chugainova, and E. I. Sveshnikova, “On the Nonuniqueness of Solutions to the Nonlinear Equations of Elasticity Theory,” J. Engrg. Math. 55(1–4), 97–110 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    V. V. Lokhin and L. I. Sedov, “Nonlinear Tensor Functions of Several Tensor Arguments,” J. Appl. Math. Mech. 27, 597–629 (1963).MathSciNetCrossRefGoogle Scholar
  30. 30.
    A. G. Kulikovskii, “Equations Describing the Propagation of Nonlinear Quasitransverse Waves in a Weakly Non-isotropic Elastic Body,” J. Appl. Math. Mech. 50(4), 455–461 (1986).MathSciNetCrossRefGoogle Scholar
  31. 31.
    E. I. Sveshnikova, “Simple Waves in Nonlinearly Elastic Media,” J. Appl. Math. Mech. 46(4), 509–512 (1982).MathSciNetCrossRefGoogle Scholar
  32. 32.
    A. G. Kulikovskii and E. I. Sveshnikova, “Investigation of the Shock Adiabat of Quasitransverse Shock Waves in a Prestressed Elastic Medium,” J. Appl. Math. Mech. 46(5), 667–673 (1982).CrossRefGoogle Scholar
  33. 33.
    L. V. Landau and E. M. Lifshits, Theoretical Physics, Vol. 6: Fluid Dynamics (Nauka, Moscow, 1986).Google Scholar
  34. 34.
    A. G. Kulikovskii and E. I. Sveshnikova, “A Selfsimilar Problem on the Action of a Sudden Load on the Boundary of an Elastic Half-Space,” J. Appl. Math. Mech. 49(2), 214–220 (1985).MathSciNetCrossRefGoogle Scholar
  35. 35.
    A. G. Kulikovskii and E. I. Sveshnikova, “The Decay of an Arbitrary Initial Discontinuity in an Elastic Medium,” J. Appl. Math. Mech. 52(6), 786–790 (1988).MathSciNetCrossRefGoogle Scholar
  36. 36.
    A. G. Kulikovskii and E. I. Sveshnikova, “A Criterion for the Non-existence or Non-uniqueness of Solutions of Self-similar Problems in the Mechanics of a Continuous Medium,” J. Appl. Math. Mech. 65(6), 941–950 (2001).MathSciNetCrossRefGoogle Scholar
  37. 37.
    A. G. Kulikovskii, “Peculiarities of the Behavior of Nonlinear Quasitransverse Waves in an Elastic Medium with a Small Anisotropy,” Proc. Steklov Inst. Math. 186(1), 153–160 (1991).Google Scholar
  38. 38.
    A. G. Kulikovskii and E. I. Sveshnikova, “On the Structure of Quasitransverse Elastic Shock Waves,” J. Appl. Math. Mech. 51(6), 711–716 (1987).MathSciNetCrossRefGoogle Scholar
  39. 39.
    A. P. Chugainova, “Study of the Structure of Quasi-transverse Shock Waves for a Certain Class of Elastic Media,” in Problems of Mechanics, Ecology, Technology (Nauka, Moscow, 1991) [in Russian].Google Scholar
  40. 40.
    A. P. Chugainova, “The Formation of a Selfsimilar Solution for the Problem of Non-linear Waves in an Elastic Half-Space,” J. Appl. Math. Mech. 52(4), 541–545 (1988).MathSciNetCrossRefGoogle Scholar
  41. 41.
    A. P. Chugainova, “Emergence of Nonlinear Waves Under the Action of a Sudden Change of the Load at the Boundary,” Mech. Solids, 25, 204–206 (1990).Google Scholar
  42. 42.
    A. A. Samarskii and Yu. P. Popov, Difference Methods for the Solution of Problems of Gas Dynamics (Nauka, Moscow, 1978) [in Russian].Google Scholar
  43. 43.
    A. P. Chugainova, “The Interaction of Non-linear Waves in a Slightly Anisotropic Viscoelastic Medium,” J. Appl. Math. Mech. 57(2), 375–381 (1993).MathSciNetCrossRefGoogle Scholar
  44. 44.
    A. P. Chugainova, “Reorganization of a Nonlinear Elastic Wave in a Medium with Weak Anisotropy,” Izv. Ross. Akad. Nauk, Ser. Mekh. Tverd. Tela 28(5), 75–81 (1993).Google Scholar
  45. 45.
    A. G. Kulikovskii and A. P. Chugainova, “Disintegration Conditions for a Nonlinear Wave in a Viscoelastic Medium,” Comput. Math. Math. Phys. 38(2), 305–312 (1998).MathSciNetGoogle Scholar
  46. 46.
    A. G. Kulikovskii and A. P. Chugainova, “The Stability of a Metastable Shock Wave in a Viscoelastic Medium Under Two-Dimensional Perturbations,” J. Appl. Math. Mech. 66(1), 107–114 (2002).CrossRefGoogle Scholar
  47. 47.
    B. B. Kadomtsev and V. I. Petviashvili, “On the Stability of Solitary Waves in Weakly Dispersing Media,” Sov. Phys., Dokl. 15, 539–541 (1970).zbMATHGoogle Scholar
  48. 48.
    E.A. Zabolotskaya and R. V. Khokhlov, “Quasi-planeWaves in the Nonlinear Acoustics of Confined Beams,” Sov. Phys. Acoust. 15, 35–40 (1969).Google Scholar
  49. 49.
    A. G. Kulikovskii and A. P. Chugainova, “Modeling the Influence of Small-scale Dispersion Processes in a Continuum on the Formation of Large-scale Phenomena,” Comput. Math. Math. Phys. 44(6), 1062–1068 (2004).MathSciNetGoogle Scholar
  50. 50.
    A.G. Kulikovskii and N. I. Gvozdovskaya, “The Effect of Dispersion on the Set of Admissible Discontinuities in Continuum Mechanics,” Proc. Steklov Inst. Math., No. 4 (223), 55–65 (1998).Google Scholar
  51. 51.
    A. P. Chugainova, “Asymptotic Behavior of Nonlinear Waves in Elastic Media with Dispersion and Dissipation,” Theor. Math. Phys. 147(2), 646–659 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    A. P. Chugainova, “Self-similar Asymptotics of Wave Problems and the Structures of Non-classical Discontinuities in Non-linearly Elastic Media with Dispersion and Dissipation,” J. Appl. Math. Mech. 71(5), 701–711 (2007).MathSciNetCrossRefGoogle Scholar
  53. 53.
    A. G. Kulikovskii, “Surfaces of Discontinuity Separating Two Perfect Media of Different Properties: Recombination Waves in Magnetohydrodynamics,” J. Appl. Math. Mech. 32(6), 1145–1152 (1968).CrossRefGoogle Scholar
  54. 54.
    P. Germain, Cours de mécanique des milieux continus, Vol. 1: Théorie générale (Masson, Paris, 1973; Vysshaya Shkola, Moscow, 1983).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. G. Kulikovskii
    • 1
  • A. P. Chugainova
    • 1
  1. 1.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations