Advertisement

On normal subgroups in the periodic products of S.I. Adian

  • V. S. AtabekyanEmail author
Article

Abstract

A subgroup H of a given group G is called a hereditarily factorizable subgroup (HF subgroup) if each congruence on H can be extended to some congruence on the entire group G. An arbitrary group G 1 is an HF subgroup of the direct product G 1 × G 2, as well as of the free product G 1 * G 2 of groups G 1 and G 2. In this paper a necessary and sufficient condition is obtained for a factor Gi of Adian’s n-periodic product Π iI n G i of an arbitrary family of groups {G i } iI to be an HF subgroup. We also prove that for each odd n ≥ 1003 any noncyclic subgroup of the free Burnside group B(m, n) contains an HF subgroup isomorphic to the group B(∞, n) of infinite rank. This strengthens the recent results of A.Yu. Ol’shanskii and M. Sapir, D. Sonkin, and S. Ivanov on HF subgroups of free Burnside groups. This result implies, in particular, that each (noncyclic) subgroup of the group B(m, n) is SQ-universal in the class of all groups of period n. Moreover, it turns out that any countable group of period n is embedded in some 2-generated group of period n, which strengthens the previously obtained result of V. Obraztsov. At the end of the paper we prove that the group B(m, n) is distinguished as a direct factor in any n-periodic group in which it is contained as a normal subgroup.

Keywords

Normal Subgroup STEKLOV Institute Free Product Quotient Group Periodic Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. I. Adian, The Burnside Problem and Identities in Groups (Springer, Berlin, 1979), Ergeb. Math. Grenzgeb. 95.Google Scholar
  2. 2.
    P. S. Novikov and S. I. Adjan, “Infinite Periodic Groups. I, II, III,” Izv. Akad. Nauk SSSR, Ser. Mat. 32, 212–244; 251–524; 709–731 (1968) [Math. USSR, Izv. 2, 209–236; 241–479; 665–685 (1968)].MathSciNetGoogle Scholar
  3. 3.
    S. I. Adjan, “Normal Subgroups of Free Periodic Groups,” Izv. Akad. Nauk SSSR, Ser. Mat. 45(5), 931–947 (1981) [Math. USSR, Izv. 19, 215–229 (1982)].MathSciNetGoogle Scholar
  4. 4.
    S. I. Adyan, “Random Walks on Free Periodic Groups,” Izv. Akad. Nauk SSSR, Ser. Mat. 46(6), 1139–1149 (1982) [Math. USSR, Izv. 21, 425–434 (1983)].MathSciNetzbMATHGoogle Scholar
  5. 5.
    P. S. Novikov and S. I. Adjan, “Defining Relations and the Word Problem for Free Periodic Groups of Odd Order,” Izv. Akad. Nauk SSSR, Ser. Mat. 32(4), 971–979 (1968) [Math. USSR, Izv. 2, 935–942 (1968)].MathSciNetGoogle Scholar
  6. 6.
    P. S. Novikov and S. I. Adjan, “On Abelian Subgroups and the Conjugacy Problem in Free Periodic Groups of Odd Order,” Izv. Akad. Nauk SSSR, Ser. Mat. 32(5), 1176–1190 (1968) [Math. USSR, Izv. 2, 1131–1144 (1968)].MathSciNetzbMATHGoogle Scholar
  7. 7.
    S. I. Adjan, “On Subgroups of Free Periodic Groups of Odd Exponent,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 112, 64–72 (1971) [Proc. Steklov Inst. Math. 112, 61–69 (1973)].Google Scholar
  8. 8.
    S. I. Adyan, “An Axiomatic Method of Constructing Groups with Given Properties,” Usp. Mat. Nauk 32 (1), 3–15 (1977) [Russ. Math. Surv. 32 (1), 1–14 (1977)].Google Scholar
  9. 9.
    S. I. Adyan, “Investigations on the Burnside Problem and Questions Connected with It,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 168, 171–196 (1984) [Proc. Steklov Inst. Math. 168, 179–205 (1986)].Google Scholar
  10. 10.
    S. I. Adian, “The Burnside Problem on Periodic Groups and Related Problems,” Sovrem. Probl. Mat. 1, 5–28 (2003) [Proc. Steklov Inst. Math. 272 (Suppl. 2), 2–12 (2011)].Google Scholar
  11. 11.
    S. I. Adjan, “Infinite Irreducible Systems of Group Identities,” Izv. Akad. Nauk SSSR, Ser. Mat. 34(4), 715–734 (1970) [Math. USSR, Izv. 4, 721–739 (1970)].MathSciNetGoogle Scholar
  12. 12.
    S. I. Adjan, “On Some Torsion-Free Groups,” Izv. Akad. Nauk SSSR, Ser. Mat. 35(3), 459–468 (1971) [Math. USSR, Izv. 5, 475–484 (1971)].MathSciNetGoogle Scholar
  13. 13.
    S. I. Adyan, “Periodic Products of Groups,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 142, 3–21 (1976) [Proc. Steklov Inst. Math. 142, 1–19 (1979)].Google Scholar
  14. 14.
    S. I. Adyan, “Once More on Periodic Products of Groups and on a Problem of A.I. Mal’tsev,” Mat. Zametki 88(6), 803–810 (2010) [Math. Notes 88, 771–775 (2010)].Google Scholar
  15. 15.
    A. Yu. Ol’shanskii, “A.I. Mal’tsev’s Problem on Operations on Groups,” Tr. Semin. im. I.G. Petrovskogo 14, 225–249 (1989) [J. Sov. Math. 51 (4), 2468–2486 (1990)].Google Scholar
  16. 16.
    S. V. Ivanov, “On Periodic Products of Groups,” Int. J. Algebra Comput. 5(1), 7–17 (1995).zbMATHCrossRefGoogle Scholar
  17. 17.
    S. I. Adyan, “On the Simplicity of Periodic Products of Groups,” Dokl. Akad. Nauk SSSR 241 (4), 745–748 (1978) [Sov. Math., Dokl. 19, 910–913 (1978)].Google Scholar
  18. 18.
    H. Neumann, Varieties of Groups (Springer, Berlin, 1967).Google Scholar
  19. 19.
    S. I. Adyan and I. G. Lysenok, “On Groups All of Whose Proper Subgroups Are Finite Cyclic,” Izv. Akad. Nauk SSSR, Ser. Mat. 55(5), 933–990 (1991) [Math. USSR, Izv. 39 (2), 905–957 (1992)].Google Scholar
  20. 20.
    A. Yu. Ol’shanskii, “Groups of Bounded Period with Subgroups of Prime Order,” Algebra Logika 21(5), 553–618 (1982) [Algebra Logic 21, 369–418 (1982)].MathSciNetGoogle Scholar
  21. 21.
    V. S. Atabekyan and S. V. Ivanov, Two Remarks on Groups of Bounded Period, Available from VINITI, No. 2243–V87 (Moscow, 1987).Google Scholar
  22. 22.
    B. H. Neumann, “An Essay on Free Products of Groups with Amalgamations,” Philos. Trans. R. Soc. London A 246, 503–554 (1954).Google Scholar
  23. 23.
    B. H. Neumann and H. Neumann, “Embedding Theorems for Groups,” J. London Math. Soc. 34, 465–479 (1959).MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    G. Higman, B. H. Neumann, and H. Neumann, “Embedding Theorems for Groups,” J. London Math. Soc. 24, 247–254 (1949).MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Yu. Ol’shanskii and M. V. Sapir, “Non-amenable Finitely Presented Torsion-by-Cyclic Groups,” Publ. Math., Inst. Hautes Étud. Sci. 96, 43–169 (2003).Google Scholar
  26. 26.
    S. V. Ivanov, “On Subgroups of Free Burnside Groups of Large Odd Exponent,” Ill. J. Math. 47(1–2), 299–304 (2003).zbMATHGoogle Scholar
  27. 27.
    A. Yu. Ol’shanskii, “The SQ-Universality of Hyperbolic Groups,” Mat. Sb. 186(8), 119–132 (1995) [Sb. Math. 186, 1199–1211 (1995)].MathSciNetGoogle Scholar
  28. 28.
    V. L. Širvanjan, “Embedding the Group B(∞, n) in the Group B(2, n),” Izv. Akad. Nauk SSSR, Ser. Mat. 40(1), 190–208 (1976) [Math. USSR, Izv. 10, 181–199 (1976)].MathSciNetGoogle Scholar
  29. 29.
    V. S. Atabekyan, On the Approximation and Subgroups of Free Periodic Groups, Available from VINITI, No. 5380-V86 (Moscow, 1986).Google Scholar
  30. 30.
    D. Sonkin, “CEP-Subgroups of Free Burnside Groups of Large Odd Exponents,” Commun. Algebra 31(10), 4687–4695 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    V. N. Obraztsov, “An Imbedding Theorem for Groups and Its Corollaries,” Mat. Sb. 180(4), 529–541 (1989) [Math. USSR, Sb. 66, 541–553 (1990)].zbMATHGoogle Scholar
  32. 32.
    V. S. Atabekyan, “Simple and Free Periodic Groups,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 6, 76–78 (1987) [Moscow Univ. Math. Bull. 42 (6), 80–82 (1987)].MathSciNetGoogle Scholar
  33. 33.
    V. S. Atabekian, “On Subgroups of Free Burnside Groups of Odd Exponent n ≥ 1003,” Izv. Ross. Akad. Nauk, Ser. Mat. 73(5), 3–36 (2009) [Izv. Math. 73, 861–892 (2009)].Google Scholar
  34. 34.
    V. S. Atabekyan, “Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period,” Mat. Zametki 85(4), 516–523 (2009) [Math. Notes 85, 496–502 (2009)].MathSciNetGoogle Scholar
  35. 35.
    D. V. Osin, “Uniform Non-amenability of Free Burnside Groups,” Arch. Math. 88(5), 403–412 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    V. S. Atabekyan, “Monomorphisms of Free Burnside Groups,” Mat. Zametki 86 (4), 483–490 (2009) [Math. Notes 86, 457–462 (2009)].Google Scholar
  37. 37.
    A. S. Pahlevanyan, “Independent Pairs in Free Burnside Groups,” Proc. Yerevan State Univ., Phys. Math. Sci., No. 2, 58–62 (2010).Google Scholar
  38. 38.
    W. Magnus, A. Karras, and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations (Interscience, New York, 1966).zbMATHGoogle Scholar
  39. 39.
    A. G. Kurosh, The Theory of Groups (Nauka, Moscow, 1967; Chelsea Publ., New York, 1955).Google Scholar
  40. 40.
    V. S. Atabekyan, “Normal Automorphisms of Free Burnside Groups,” Izv. Ross. Akad. Nauk, Ser. Mat. 75(2), 3–18 (2011) [Izv. Math. 75, 223–237 (2011)].MathSciNetGoogle Scholar
  41. 41.
    A. Yu. Ol’shanskii, “Self-normalization of Free Subgroups in the Free Burnside Groups,” in Groups, Rings, Lie and Hopf Algebras, St. John’s, Canada, 2001 (Kluwer, Dordrecht, 2003), Math. Appl. 555, pp. 179–187.CrossRefGoogle Scholar
  42. 42.
    E. A. Cherepanov, “Normal Automorphisms of Free Burnside Groups of Large Odd Exponents,” Int. J. Algebra Comput. 16(5), 839–847 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    The Kourovka Notebook: Unsolved Problems in Group Theory, Ed. by V. D. Mazurov, Yu. I. Merzlyakov, and V. A. Churkin, 7th ed. (Inst. Math., Novosibirsk, 1980) [in Russian].zbMATHGoogle Scholar
  44. 44.
    V. S. Atabekyan, “The Normalizers of Free Subgroups in Free Burnside Groups of Odd Period n ≥ 1003,” Fundam. Prikl. Mat. 15(1), 3–21 (2009) [J. Math. Sci. 166 (6), 691–703 (2010)].MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Faculty of Mathematics and MechanicsYerevan State UniversityYerevanArmenia

Personalised recommendations