Almost everywhere divergence of lacunary subsequences of partial sums of fourier series

  • S. V. Konyagin


If an increasing sequence {n m } of positive integers and a modulus of continuity ω satisfy the condition Σ m=1 ω(1/n m )/m < ∞, then it is known that the subsequence of partial sums \(S_{n_m } \left( {f,x} \right)\) converges almost everywhere to f(x) for any function fH 1 ω . We show that this sufficient convergence condition is close to a necessary condition for a lacunary sequence {n m }.


Fourier series Lebesgue measure modulus of continuity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Yu. Antonov, Mat. Zametki 76(5), 651 (2004).MathSciNetGoogle Scholar
  2. 2.
    N. Yu. Antonov, Izv. Tul’sk. Gos. Univ., Ser. Mat. Mekh. Informatika 2(1), 12 (2006).Google Scholar
  3. 3.
    N. Yu. Antonov, Mat. Zametki 85(4), 502 (2009).MathSciNetGoogle Scholar
  4. 4.
    A. Zygmund, Trigonometric Series (Cambridge Univ. Press, New York, 1959; Moscow, Mir, 1965).zbMATHGoogle Scholar
  5. 5.
    K. I. Oskolkov, Trudy Mat. Inst. Steklova 167, 239 (1985).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations