Advertisement

Euler and mathematical methods in mechanics

  • V. V. Kozlov
Conference “leonhard Euler and Modern Mathematics”
  • 68 Downloads

Keywords

STEKLOV Institute Invariant Manifold Divergent Series Linear Hamiltonian System Strict Local Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Krylov, “Leonhard Euler,” in Collection of Works of Academician A.N. Krylov, Vol. 1, Ch. 2: Popular Scientific Works. Biographical Characteristic (Izd. Akad. Nauk SSSR, Moscow, 1951), pp. 192–217 [in Russian].Google Scholar
  2. 2.
    G. H. Hardy, Divergent Series (Clarendon, Oxford, 1949).zbMATHGoogle Scholar
  3. 3.
    A. N. Kuznetsov, “Differentiable Solutions to Degenerate Systems of Ordinary Equations,” Funkts. Anal. Ego Prilozh. 6(2), 41–51 [Funct. Anal. Appl. 6 (2), 119–127 (1972)].Google Scholar
  4. 4.
    A. N. Kuznetsov, “Existence of Solutions Entering at a Singular Point of an Autonomous System Having a Formal Solution,” Funkts. Anal. Ego Prilozh. 23(4), 63–74 (1989) Funct. Anal. Appl. 23 (4), 308–317 (1989).Google Scholar
  5. 5.
    J.-P. Ramis, Séries divergentes et théories asymptotiques, in Panoramas et Synthèses (Soc. Math. France, Paris, 1993), Vol. 121.zbMATHGoogle Scholar
  6. 6.
    V. V. Kozlov, “Asymptotic Motions and the Inversion of the Lagrange-Dirichlet Theorem,” Prikl. Mat. Mekh. 50(6), 928–937 (1986) [J. Appl. Math. Mech. 50 (6), 719–725 (1986)].MathSciNetGoogle Scholar
  7. 7.
    V. V. Kozlov and V. P. Palamodov, “On Asymptotic Solutions of the Equations of Classical Mechanics,” Dokl. Akad. Nauk SSSR 263(2), 285–289 (1982) [Soviet Math. Dokl. 25 (2), 335–339 (1982)].MathSciNetGoogle Scholar
  8. 8.
    V. V. Kozlov and S. D. Furta, Asymptotic Expansions of Solutions of Strongly Nonlinear Systems of Differential Equations (Izd. Mosk. Univ., Moscow, 1996) [in Russian].zbMATHGoogle Scholar
  9. 9.
    C. G. J. Jacobi, Vorlesungen über analytische Mechanik, in Dokumente Gesch. Math. (Deutsche Mathematiker Vereinigung, Freiburg, 1996), Vol. 8.Google Scholar
  10. 10.
    V. I. Arnold, “On the Topology of Three-Dimensional Steady Flows of an Ideal Fluid,” Prikl. Mat. Mekh. 30(1), 183–185 (1966) [J. Appl. Math. Mech. 30 (1), 223–226 (1966)].Google Scholar
  11. 11.
    V. V. Kozlov, “Notes on Steady Vortex Motions of Continuous Medium,” Prikl. Mat. Mekh. 47(2), 341–342 (1983) [J. Appl. Math. Mech. 47 (2), 288–289 (1983)].MathSciNetGoogle Scholar
  12. 12.
    S. V. Bolotin, “Nonintegrability of the N-Center Problem for N >2,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 3, 65–68 (1984) [Moscow Univ. Mech. Bull. 39 (3), 24–28 (1984)].Google Scholar
  13. 13.
    V. V. Kozlov, “The Hydrodynamics of Hamiltonian Systems,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 6, 10–22 (1983) [Moscow Univ. Mech. Bull. 38 (6), 9–23 (1983)].Google Scholar
  14. 14.
    V. V. Kozlov, “An Extension of the Hamilton-Jacobi Method,” Prikl. Mat. Mekh. 60(6), 929–939 (1996) [J. Appl. Math. Mech. 60 (6), 911–920 (1996)].MathSciNetGoogle Scholar
  15. 15.
    I. S. Arzhanykh, Momentum Fields (Nat. Lending Lib., Boston Spa, Yorkshire, 1971; Nauka, Tashkent, 1965).zbMATHGoogle Scholar
  16. 16.
    V. V. Kozlov, Dynamical Systems. X. General Theory of Vortices, in Encyclopaedia Math. Sci. (Springer-Verlag, Berlin, 2003) Vol. 67.Google Scholar
  17. 17.
    V. V. Kozlov, “Eddy Theory of the Top,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 4, 56–62 (1990) [Moscow Univ. Mech. Bull. 45 (4), 26–38 (1990)].Google Scholar
  18. 18.
    H. Poincaré, “Sur une forme nouvelle des équations de la m échanique,” C. R. Acad. Sci. Paris 132, 369–371 (1901).zbMATHGoogle Scholar
  19. 19.
    V. V. Kozlov and V. A. Yaroshchuk, “On the Invariant Measures of Euler-Poincar é Equations on Unimodular Groups,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 2, 91–95 (1993) [Moscow Univ. Mech. Bull. 48 (2), 45–50 (1993)].Google Scholar
  20. 20.
    J.-J. Moreau, “Une m éthode de “cin ématique fonctionnelle” en hydrodynamique,” C. R. Acad. Sci. Paris 249, 2156–2158 (1959).zbMATHMathSciNetGoogle Scholar
  21. 21.
    V. I. Yudovich, “Plane Unsteady Motion of an Ideal Incompressible Fluid,” Dokl. Akad. Nauk SSSR 136(3), 564–567 (1961) [Soviet Phys. Dokl. 6 (3), 18–20 (1961)].Google Scholar
  22. 22.
    V. I. Arnold, “Sur un principe variationnel pour lesécoulements stationnaires des liquides parfaits et ses applications aux problèmes de stabilité non linéaires,” J.Mécanique 5(1), 29–43 (1966).Google Scholar
  23. 23.
    M. V. Deryabin and Yu. N. Fedorov, “On Reductions for a Group of Geodesic Flows with (Left-) Right-Invariant Metric, and Their Symmetry Fields,” Dokl. Akad. Nauk 391(4), 439–442 (2003) [Dokl. Math. 68 (1), 75–78 (2003)].MathSciNetGoogle Scholar
  24. 24.
    V. V. Kozlov, “Linear Systems with a Quadratic Integral,” Prikl. Mat. Mekh. 56(6), 900–906 (1992) [J. Appl. Math. Mech. 56 (6), 803–809 (1992)].MathSciNetGoogle Scholar
  25. 25.
    V. V. Kozlov, “On the Degree of Instability,” Prikl. Mat. Mekh. 57(5), 14–19 (1993) [J. Appl. Math. Mech. 57 (5), 771–776 (1993)].MathSciNetGoogle Scholar
  26. 26.
    A. Ostrowski and H. Schneider, “Some Theorems on the Inertia of General Matrices,” J. Math. Anal. Appl. 4(1), 72–84 (1962).CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    V. V. Kozlov, “Remarks on Eigenvalues of Real Matrices,” Dokl. Akad. Nauk 403(5), 589–592 (2005) [Dokl. Math. 72 (1), 567–569 (2005)].MathSciNetGoogle Scholar
  28. 28.
    V. V. Kozlov and A. A. Karapetyan, “On the Degree of Stability,” Differ. Uravn. 41(2), 186–192 (2005) [Differ. Equations 41 (2), 195–201 (2005)].MathSciNetGoogle Scholar
  29. 29.
    H. K. Wimmer, “Inertia Theorems for Matrices, Controllability, and Linear Vibrations,” Linear Algebra Appl. 8(4), 337–343 (1974).CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    P. Lancaster and M. Tismenetsky, “Inertia Characteristics of Selfajoint Matrix Polynomials,” Linear Algebra Appl. 52–53, 479–496 (1983).MathSciNetGoogle Scholar
  31. 31.
    A. A. Shkalikov, “Operator Pencils Arising in Elasticity and Hydrodynamics: The Instability Index Formula,” in Recent Developments in Operator Theory and Its Applications. Proceedings of International Conference, Winnipeg, Canada, 1994, in Oper. Theory Adv. Appl. (Birkh äuser, Basel, 1996), Vol. 87, pp. 358–385.Google Scholar
  32. 32.
    Classical Dynamics in non-Euclidean Spaces, Ed. by A. V. Borisov and I. S. Mamaev (Inst. Komp’yuter. Issled., Moscow, 2004) [in Russian].Google Scholar
  33. 33.
    V. V. Kozlov and A. O. Harin, “Kepler’s Problem in Constant Curvature Spaces,” Celestial Mech. Dynam. Astronom. 54(4), 393–399 (1992).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. V. Kozlov
    • 1
  1. 1.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations