Advertisement

Four-term recurrence relations for γ-forms

  • A. I. Aptekarev
  • D. N. Tulyakov
Rational Approximants for the Euler Constant and Recurrence Relations

Keywords

STEKLOV Institute Recurrence Relation Rational APPROXIMANTS EULER Constant Multiple Orthogonal Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Aptekarev, A. Branquinho, and W. van Assche, “Multiple Orthogonal Polynomials for Classical Weights,” Trans. Amer. Math. Soc. 355(10), 3887–3914 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    V. A. Kalyagin, “Hermite-Padé Approximants and Spectral Analysis of Nonsymmetric Operators,” Mat. Sb. 185(6), 79–100 (1994) [Russ. Acad. Sci. Sb.Math. 82 (1), 199–216 (1995)].Google Scholar
  3. 3.
    D. V. Khristoforov, “Recurrence Relations for Hermite-Padé Approximants for a System of Four Functions of Markov and Stieltjes Type,” in Modern Problems of Mathematics, Ed. by A. I. Aptekarev (Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk, Moscow, 2006), Vol. 9, pp. 11–26 [in Russian].Google Scholar
  4. 4.
    A. I. Bogolyubskii, “Recurrence Relations with Rational Coefficients for Multiple Orthogonal Polynomials Determined by the Rodrigues Formula,” in Modern Problems of Mathematics, Ed. by A. I. Aptekarev (Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk, Moscow, 2006), Vol. 9, pp. 27–35 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. I. Aptekarev
    • 1
  • D. N. Tulyakov
    • 1
  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations