Advertisement

Preface

  • A. I. Aptekarev
Rational Approximants for the Euler Constant and Recurrence Relations

Keywords

STEKLOV Institute Recurrence Relation Asymptotic Formula Modern Problem Rational Approximants 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Apéry, “Irrationalite de ζ(2) et ζ(3),” Asterisque 61, 11–13 (1979).zbMATHGoogle Scholar
  2. 2.
    Yu. V. Nesterenko, “Some Remarks on ζ(3),” Mat. Zametki 59(6), 865–880 (1996).MathSciNetGoogle Scholar
  3. 3.
    T. Rivoal and W. Zudilin, “Diophantine Properties of Numbers Related to Catalan’s Constant,” Math. Ann. 326(4), 705–721 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    W. Zudilin, “Well-Poised Hypergeometric Service for Diophantine Problems of Zeta Values,” J. Theorie Nombres Bordeaux 15(2), 593–626 (2003).zbMATHMathSciNetGoogle Scholar
  5. 5.
    V. N. Sorokin, “An Algorithm for Fast Computation of π 4,” Preprint No. 28 (Keldysh Inst. Applied Math., Russian Acad. Sci., Moscow, 2002).Google Scholar
  6. 6.
    A. I. Aptekarev, A. Branquinho, and W. Van Assche, “Multiple Orthogonal Polynomials for Classical Weights,” Trans. Amer. Math. Soc. 355(10), 3887–3914 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    D. V. Khristoforov, “Recurrence Relations for Hermite-Padé Approximants for a System of Four Functions of Markov and Stieltjes Type,” in Modern Problems of Mathematics, Ed. by A. I. Aptekarev (Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk, Moscow, 2006), Vol. 9, pp. 11–26 [in Russian]; Proc. Sleklov Inst. Math. 272, Suppl. 2, 141–150 (2011).Google Scholar
  8. 8.
    A. I. Bogolyubskii, “Recurrence Relations with Rational Coefficients for Multiple Orthogonal Polynomials Determined by the Rodrigues Formula,” in Modern Problems of Mathematics, Ed. by A. I. Aptekarev (Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk, Moscow, 2006), Vol. 9, pp. 27–35 [in Russian]; Proc. Sleklov Inst. Math. 272, Suppl. 2, 151–155 (2011).Google Scholar
  9. 9.
    A. I. Aptekarev and D. N. Tulyakov, “Four-Term Recurrence Relations for γ-Forms,” in Modern Problems of Mathematics, Ed. by A. I. Aptekarev (Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk, Moscow, 2006), Vol. 9, pp. 37–43 [in Russian]; Proc. Sleklov Inst.Math. 272, Suppl. 2, 156–160 (2011).Google Scholar
  10. 10.
    D. N. Tulyakov, “A Procedure for Finding Asymptotic Expansions for Solutions of Difference Equations,” in Modern Problems of Mathematics, Ed. by A. I. Aptekarev (Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk, Moscow, 2006), Vol. 9, pp. 45–53 [in Russian]; Proc. Sleklov Inst. Math. 272, Suppl. 2, 161–166 (2011).Google Scholar
  11. 11.
    A. I. Aptekarev and V. G. Lysov, “Asymptotic γ-Forms Generated by Multiple Orthogonal Polynomials,” in Modern Problems of Mathematics, Ed. by A. I. Aptekarev (Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk, Moscow, 2006), Vol. 9, pp. 55–62 [in Russian]; Proc. Sleklov Inst. Math. 272, Suppl. 2, 167–172 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. I. Aptekarev
    • 1
  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations