Advertisement

The Burnside problem on periodic groups and related questions

  • S. I. Adian
Article

Abstract

In a 1959–1975 cycle of papers, P.S. Novikov and S.I. Adian created a new method for studying periodic groups based on the classification of periodic words by means of a complicated simultaneous induction. The method was developed for solving the well-known Burnside problem on periodic groups, but it also enabled the authors to solve a number of other difficult problems of group theory. An extended survey of results contained in the cycle of papers mentioned above and of other significant results obtained after 1975 by Adian and other authors on the basis of the developed theory and its modifications is presented.

Keywords

STEKLOV Institute Periodic Group Elementary Period Simultaneous Induction Combinatorial Group Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Burnside, “On an Unsettled Question in the Theory of Discontinuous Groups,” Quart. J. Pure Appl. Math. 33, 230–238 (1902).zbMATHGoogle Scholar
  2. 2.
    W. Magnus, “A Connection between the Baker-Hausdorff Formula and a Problem of Burnside,” Ann. Math. (2) 52 111–126 (1950); 57, 606 (1953).CrossRefMathSciNetGoogle Scholar
  3. 3.
    I. N. Sanov, “Establishing a Relation between Periodic Groups with Prime Periods and Lie Rings,” Izv. Akad. Nauk SSSR, Ser. Mat. 16(1), 23–58 (1952).zbMATHMathSciNetGoogle Scholar
  4. 4.
    B. Chandler and W. Magnus, The History of Combinatorial Group Theory: A Case Study of in the History of Ideas (Springer, New York, 1982; Mir, Moscow, 1985).zbMATHGoogle Scholar
  5. 5.
    I. N. Sanov, “Solution of the Burnside Problem for Exponent 4,” Uchen. Zap. Leningr. Univ. Ser. Mat. 10, 166–170 (1940).MathSciNetGoogle Scholar
  6. 6.
    M. Hall, Jr., “Solution of the Burnside Problem for Exponent Six,” Illinois J. Math. 2, 764–786 (1958).zbMATHMathSciNetGoogle Scholar
  7. 7.
    W. Burnside, “On Criteria for the Finiteness of the Order of Linear Substitutions,” Proc. London Math. Soc. 3, 435–440 (1905).CrossRefGoogle Scholar
  8. 8.
    E. S. Golod, “On Nil-Algebras and Finitely Approximable p-Groups,” Izv. Akad. Nauk SSSR, Ser. Mat. 28(2), 273–276 (1964).MathSciNetGoogle Scholar
  9. 9.
    S. V. Aleshin, “Finite Automata and the Burnside Problem for Periodic Groups,” Mat. Zametki 11(3), 319–328 (1972) [Math. Notes 11, 199–203 (1972)].zbMATHMathSciNetGoogle Scholar
  10. 10.
    R. I. Grigorchuk, “Burnside’s Problemon Periodic Groups,” Funkts. Anal. Ego Prilozh. 14(1), 53–54 (1980) [Funct. Anal. Appl. 14 (1), 41–43 (1980)].MathSciNetGoogle Scholar
  11. 11.
    P. S. Novikov and S. I. Adian, “Infinite Periodic Groups. I” Izv. Akad.Nauk SSSR, Ser. Mat. 32(1), 212–244 [Math. USSR Izv. 2 (1), 209–236 (1968)].Google Scholar
  12. 12.
    P. S. Novikov and S. I. Adian, “Infinite Periodic Groups. II” Izv. Akad. Nauk SSSR, Ser. Mat. 32(2), 251–524 [Math. USSR Izv. 2 (2), 241–479 (1968)].Google Scholar
  13. 13.
    P. S. Novikov and S. I. Adian, “Infinite Periodic Groups. III,” Izv. Akad. Nauk SSSR, Ser. Mat. 32(3), 709–731 (1968) [Math. USSR Izv. 2 (3), 665–685 (1968)].MathSciNetGoogle Scholar
  14. 14.
    P. S. Novikov, “On Periodic Groups,” Dokl. Akad. Nauk SSSR 127(4), 749–752 (1959) [Amer. Math. Soc. Transl. 45 (2), 19–22 (1965)].zbMATHMathSciNetGoogle Scholar
  15. 15.
    S. I. Adian, The Burnside Problem and Identities in Groups (Nauka, Moscow, 1975; Springer, Berlin, 1979).Google Scholar
  16. 16.
    S. I. Adian, “On Some Torsion-Free Groups,” Izv. Akad. Nauk SSSR, Ser. Mat. 35(3), 459–468 (1971) [Math. USSR Izv. 5 (3), 475–484 (1971)].MathSciNetGoogle Scholar
  17. 17.
    P. S. Novikov and S. I. Adian, “Defining Relations and the Word Problem for Free Periodic Groups of Odd Order,” Izv. Akad. Nauk SSSR, Ser. Mat. 32(4), 971–979 (1968) [Math. USSR Izv. 2 (4), 935–942 (1968)].MathSciNetGoogle Scholar
  18. 18.
    P. S. Novikov and S. I. Adian, “On Abelian Subgroups and the Conjugacy Problem in Free Periodic Groups of Odd Order,” Izv. Akad. Nauk SSSR, Ser. Mat. 32(5), 1176–1190 (1968) [Math. USSR Izv. 2 (5), 1131–1144 (1968)].zbMATHMathSciNetGoogle Scholar
  19. 19.
    S. I. Adian, “The Subgroups of Free Periodic Groups of Odd Exponent,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 112, 64–72 (1971) [Proc. Steklov Inst. Math. 112, 61–69 (1971)].Google Scholar
  20. 20.
    S. I. Adian, “Normal Subgroups of Free Periodic Groups,” Izv. Akad. Nauk SSSR, Ser. Mat. 45(5), 1139–1149 (1981) [Math. USSR Izv. 19 (2), 215–229 (1982)].Google Scholar
  21. 21.
    S. I. Adian, “Random Walks on Free Periodic Groups,” Izv. Akad. Nauk SSSR, Ser. Mat. 46(6), 1139–1149 (1982) [Math. USSR Izv. 21 (3), 425–434 (1983)].MathSciNetGoogle Scholar
  22. 22.
    H. Kesten, “Symmetric Random Walks on Groups,” Trans. Amer. Math. Soc. 92, 336–354 (1959).CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    S. I. Adian, “An Axiomatic Method of Constructing Groups with Given Properties,” Usp. Mat. Nauk 32(1), 3–15 (1977) [Russian Math. Surveys 32 (1), 1–14 (1977)].MathSciNetGoogle Scholar
  24. 24.
    R. I. Grigorchuk, “Symmetric Random Walks on Discrete Groups,” in Multicomponent Random Systems (Nauka, Moscow, 1978), pp. 132–152 [in Russian].Google Scholar
  25. 25.
    S. I. Adian and I. G. Lysionok, “TheMethod of Classification of Periodic Words and the Burnside Problem,” Contemp. Math. 131,Part 1, 13–28 (1992).MathSciNetGoogle Scholar
  26. 26.
    S. I. Adian, “On the Word Probem for Groups Defined by Periodic Relations,” Lecture Notes Math. 806, 41–46 (1980).CrossRefMathSciNetGoogle Scholar
  27. 27.
    S. I. Adian, “Periodic Products of Groups,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 142, 3–21 (1976) [Proc. Steklov Inst. Math. 142, 1–19 (1979)].Google Scholar
  28. 28.
    S. I. Adian, “The Simplicity of Periodic Products of Groups,” Dokl. Akad. Nauk SSSR 241(1), 745–748 (1978) [SovietMath. Dokl. 19 (4), 910–913 (1978)].MathSciNetGoogle Scholar
  29. 29.
    J. L. Britton, “The Existence of Infinite Burnside Groups,” in Word Problems (North-Holland, Amsterdam, 1973), pp. 67–348.Google Scholar
  30. 30.
    J. L. Britton, “Erratum: The Existence of Infinite Burnside Groups,” in Word Problems (North-Holland, Amsterdam, 1980), p. 71.CrossRefGoogle Scholar
  31. 31.
    A. Yu. Ol’shanskii, Geometry of Defining Relations in Groups (Nauka, Moscow, 1989; Kluwer, Dordrecht, 1991).Google Scholar
  32. 32.
    V. S. Atabekyan and S. V. Ivanov, Two Remarks on Groups with Bounded Period, Available from VINITI, No. 2243-V87 (Moscow, 1987).Google Scholar
  33. 33.
    S. I. Adian and I. G. Lysenok, “On Groups All of Whose Proper Subgroups are Finite Cyclic,” Izv. Akad. Nauk SSSR, Ser. Mat. 55(5), 933–990 (1991) [Math. USSR Izv. 39 (2), 905–957 (1992).]Google Scholar
  34. 34.
    V. S. Guba, Construction of Groups with New Properties by Using Cancellation Diagrams, Candidate’s Dissertation in Physics and Mathematics (MSU, Moscow, 1989).Google Scholar
  35. 35.
    S. V. Ivanov, “The Free Burnside Groups of Sufficiently Large Exponents,” Int. J. Algebra Comput. 4, 1–307 (1994).CrossRefGoogle Scholar
  36. 36.
    I. G. Lysenok, “Infinite Burnside Groups of Even Exponent,” Izv. Ross. Akad. Nauk. Ser. Mat. 60(3), 3–224 (1996) [Izv. Math. 60 (3), 453–654 (1996)].MathSciNetGoogle Scholar
  37. 37.
    S. I. Adian, “Infinite Irreducible Systems of Group Identities,” Dokl. Akad. Nauk SSSR 190(3), 499–501 (1970); Izv. Akad. Nauk SSSR, Ser. Mat., 1970, 34 (4), 719–734 (1970) [Soviet Math. Dokl. 11, 113–115 (1970)].MathSciNetGoogle Scholar
  38. 38.
    S. I. Adian, “Studies in the Burnside Problem and Related Questions,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 168, 171–196 (1984) [Proc. Steklov Inst. Math. 186, 179–205 (1986)].Google Scholar
  39. 39.
    V. S. Guba, “A Finitely Generated Complete Group,” Izv. Akad. Nauk SSSR, Ser. Mat. 50(5), 50–67 (1986) [Math. USSR Izv. 29 (2), 233–277 (1987)].MathSciNetGoogle Scholar
  40. 40.
    I. Shur, “Über Gruppen periodisher Linearer Substitutionen,” S. Ber. Preuss. Akad., 619–627 (1911).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • S. I. Adian
    • 1
  1. 1.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations