Higher covariant derivative regularization for calculations in supersymmetric theories

  • K. V. StepanyantzEmail author


A variant of the higher covariant derivative regularization is used for calculation of a two-loop β-function for the general renormalizable N = 1 supersymmetric theory. It is shown that the β-function is given by integrals of total derivatives. Partially this can be explained by substituting solutions of Slavnov-Taylor identities into the Schwinger-Dyson equations.


Gauge Theory STEKLOV Institute Anomalous Dimension Total Derivative Supersymmetric Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. t’ Hooft and M. Veltman, “Regularization and Renormalization of Gauge Fields,” Nucl. Phys. B 44, 189–213 (1972).CrossRefGoogle Scholar
  2. 2.
    W. Siegel, “Supersymmetric Dimensional Regularization via Dimensional Reduction,” Phys. Lett. B 84, 193–196 (1979).MathSciNetCrossRefGoogle Scholar
  3. 3.
    L. V. Avdeev and O. V. Tarasov, “The Three-Loop Beta-Function in the N = 1, 2, 4 Supersymmetric Yang-Mills Theories,” Phys. Lett. B 112, 356–358 (1982).CrossRefGoogle Scholar
  4. 4.
    L. F. Abbott, M. T. Grisaru, and D. Zanon, “Infrared Divergences and a Non-local Gauge for Superspace Yang-Mills Theory,” Nucl. Phys. B 244, 454–468 (1984).MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Parkes and P. West, “Finiteness in Rigid Supersymmetric Theories,” Phys. Lett. B 138, 99–104 (1984).CrossRefGoogle Scholar
  6. 6.
    I. Jack, D. R. T. Jones, and C. G. North, “N = 1 Supersymmetry and the Three-Loop Gauge β-Function,” Phys. Lett. B 386, 138–140 (1996).CrossRefGoogle Scholar
  7. 7.
    I. Jack, D. R. T. Jones, and C. G. North, “N = 1 Supersymmetry and the Three-Loop Anomalous Dimension for the Chiral Superfield,” Nucl. Phys. B 473, 308–322 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    I. Jack, D. R. T. Jones, and C. G. North, “Scheme Dependence and the NSVZ β-Function,” Nucl. Phys. B 486, 479–499 (1997).CrossRefGoogle Scholar
  9. 9.
    I. Jack, D. R. T. Jones, and A. Pickering, “The Connection between the DRED and NSVZ Renormalisation Schemes,” Phys. Lett. B 435, 61–66 (1998).MathSciNetCrossRefGoogle Scholar
  10. 10.
    W. Siegel, “Inconsistency of Supersymmetric Dimensional Regularization,” Phys. Lett. B 94, 37–40 (1980).MathSciNetCrossRefGoogle Scholar
  11. 11.
    D. Stöckinger, “Regularization by Dimensional Reduction: Consistency, Quantum Action Principle, and Supersymmetry,” J. High Energy Phys., No. 3, 076 (2005).Google Scholar
  12. 12.
    W. Hollik and D. Stöckinger, “MSSM Higgs-Boson Mass Predictions and Two-Loop Non-supersymmetric Counterterms,” Phys. Lett. B 634, 63–68 (2006).CrossRefGoogle Scholar
  13. 13.
    A. Signer and D. Stöckinger, “Factorization and Regularization by Dimensional Reduction,” Phys. Lett. B 626, 127–138 (2005).CrossRefGoogle Scholar
  14. 14.
    J. Mas, C. Seijas, and M. Pérez-Victoria, “The Beta Function of N = 1 SYM in Differential Renormalization,” J. High Energy Phys., No. 3, 049 (2002).Google Scholar
  15. 15.
    D. Z. Freedman, K. Johnson, and J. Latorre, “Differential Regularization and Renormalization: A New Method of Calculation in Quantum Field Theory,” Nucl. Phys. B 371, 353–414 (1992).MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. A. Slavnov, “Invariant Regularization of Non-linear Chiral Theories,” Nucl. Phys. B 31, 301–315 (1971).MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. A. Slavnov, “Invariant Regularization of Gauge Theories,” Teor. Mat. Fiz. 13(2), 174–177 (1972) [Theor. Math. Phys. 13, 1064–1066 (1972)].Google Scholar
  18. 18.
    V. K. Krivoshchekov, “Invariant Regularization for Supersymmetric Gauge Theories,” Teor. Mat. Fiz. 36(3), 291–302 (1978) [Theor. Math. Phys. 36, 745–752 (1978)].MathSciNetGoogle Scholar
  19. 19.
    P. West, “Higher Derivative Regulation of Supersymmetric Theories,” Nucl. Phys. B 268, 113–124 (1986).CrossRefGoogle Scholar
  20. 20.
    C. P. Martin and F. Ruiz Ruiz, “Higher Covariant Derivative Pauli-Villars Regularization Does Not Lead to a Consistent QCD,” Nucl. Phys. B 436, 545–581 (1995).CrossRefGoogle Scholar
  21. 21.
    M. Asorey and F. Falceto, “Consistency of the Regularization of Gauge Theories by High Covariant Derivatives,” Phys. Rev. D 54, 5290–5301 (1996).CrossRefGoogle Scholar
  22. 22.
    T. D. Bakeyev and A. A. Slavnov, “Higher Covariant Derivative Regularization Revisited,” Mod. Phys. Lett. A 11, 1539–1554 (1996).CrossRefGoogle Scholar
  23. 23.
    D. J. Gross and F. Wilczek, “Ultraviolet Behavior of Non-Abelian Gauge Theories,” Phys. Rev. Lett. 30, 1343–1346 (1973).CrossRefGoogle Scholar
  24. 24.
    H. D. Politzer, “Reliable Perturbative Results for Strong Interactions?,” Phys. Rev. Lett. 30, 1346–1349 (1973).CrossRefGoogle Scholar
  25. 25.
    P. I. Pronin and K. V. Stepanyantz, “One-Loop Counterterms for Higher Derivative Regularized Lagrangians,” Phys. Lett. B 414, 117–122 (1997).CrossRefGoogle Scholar
  26. 26.
    S. Arnone, T. R. Morris, and O. J. Rosten, “Manifestly Gauge Invariant QED,” J. High Energy Phys., No. 10, 115 (2005).Google Scholar
  27. 27.
    T. R. Morris and O. J. Rosten, “Manifestly Gauge-Invariant QCD,” J. Phys. A 39, 11657–11681 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    O. J. Rosten, “On the Renormalization of Theories of a Scalar Chiral Superfield,” J. High Energy Phys., No. 3, 004 (2010).Google Scholar
  29. 29.
    S. Arnone, A. Gatti, T. R. Morris, and O. J. Rosten, “Exact Scheme Independence at Two Loops,” Phys. Rev. D 69, 065009 (2004).CrossRefGoogle Scholar
  30. 30.
    T. R. Morris and O. J. Rosten, “A Manifestly Gauge Invariant, Continuum Calculation of the SU(N) Yang-Mills Two-Loop β Function,” Phys. Rev. D 73, 065003 (2006).MathSciNetCrossRefGoogle Scholar
  31. 31.
    S. Arnone, Y. A. Kubyshin, T. R. Morris, and J. F. Tighe, “Gauge-Invariant Regularization via SU(N|N),” Int. J. Mod. Phys. A 17, 2283–2329 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    A. A. Soloshenko and K. V. Stepanyantz, “Three-Loop β-Function for N = 1 Supersymmetric Electrodynamics, Regularized by Higher Derivatives,” arXiv: hep-th/0304083.Google Scholar
  33. 33.
    A. A. Soloshenko and K. V. Stepanyantz, “Three-Loop β-Function of N = 1 Supersymmetric Electrodynamics Regularized by Higher Derivatives,” Teor. Mat. Fiz. 140(3), 437–459 (2004) [Theor. Math. Phys. 140, 1264–1282 (2004)].Google Scholar
  34. 34.
    A. Smilga and A. Vainshtein, “Background Field Calculations and Nonrenormalization Theorems in 4d Supersymmetric Gauge Theories and Their Low-Dimensional Descendants,” Nucl. Phys. B 704, 445–474 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    K. V. Stepanyantz, “Investigation of the Anomaly Puzzle in N = 1 Supersymmetric Electrodynamics,” Teor. Mat. Fiz. 142(1), 37–57 (2005) [Theor. Math. Phys. 142, 29–47 (2005)].Google Scholar
  36. 36.
    A. B. Pimenov, A. A. Soloshenko, K. V. Stepanyantz, and E. S. Shevtsova, “Regularization by Higher Derivatives and Quantum Correction for N = 1 Supersymmetric Theories,” Izv. Vyssh. Uchebn. Zaved., Fiz. 51(5), 5–35 (2008) [Russ. Phys. J. 51, 444–479 (2008)].MathSciNetGoogle Scholar
  37. 37.
    A. B. Pimenov, E. S. Shevtsova, and K. V. Stepanyantz, “Calculation of Two-Loop β-Function for General N = 1 Supersymmetric Yang-Mills Theory with the Higher Covariant Derivative Regularization,” Phys. Lett. B 686, 293–297 (2010).MathSciNetCrossRefGoogle Scholar
  38. 38.
    P. West, Introduction to Supersymmetry and Supergravity (World Sci., Singapore, 1986).Google Scholar
  39. 39.
    I. L. Buchbinder and S. V. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity (Taylor & Francis, Boca Raton, FL, 1998).zbMATHGoogle Scholar
  40. 40.
    A. A. Slavnov, “Universal Gauge Invariant Renormalization,” Phys. Lett. B 518, 195–200 (2001).zbMATHCrossRefGoogle Scholar
  41. 41.
    A. A. Slavnov, “Regularization-Independent Gauge-Invariant Renormalization of the Yang-Mills Theory,” Teor. Mat. Fiz. 130(1), 3–14 (2002) [Theor. Math. Phys. 130, 1–10 (2002)].MathSciNetGoogle Scholar
  42. 42.
    A. A. Slavnov and K. V. Stepanyantz, “Universal Invariant Renormalization for Supersymmetric Theories,” Teor. Mat. Fiz. 135(2), 265–279 (2003) [Theor. Math. Phys. 135, 673–684 (2003)].Google Scholar
  43. 43.
    A. A. Slavnov and K. V. Stepanyantz, “Universal Invariant Renormalization for the Supersymmetric Yang-Mills theory,” Teor. Mat. Fiz. 139(2), 179–191 (2004) [Theor. Math. Phys. 139, 599–608 (2004)].Google Scholar
  44. 44.
    L. D. Faddeev and A. A. Slavnov, Gauge Fields: An Introduction to Quantum Theory (Westview Press, Boulder, CO, 1991).Google Scholar
  45. 45.
    N. Arkani-Hamed and H. Murayama, “Holomorphy, Rescaling Anomalies and Exact β Functions in Supersymmetric Gauge Theories,” J. High Energy Phys., No. 6, 030 (2000).Google Scholar
  46. 46.
    V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Exact Gell-Mann-Low Function of Supersymmetric Yang-Mills Theories from Instanton Calculus,” Nucl. Phys. B 229, 381–393 (1983).CrossRefGoogle Scholar
  47. 47.
    V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “The Beta Function in Supersymmetric Gauge Theories: Instantons versus Traditional Approach,” Phys. Lett. B 166, 329–333 (1986).CrossRefGoogle Scholar
  48. 48.
    M. A. Shifman and A. I. Vainshtein, “Solution of the Anomaly Puzzle in SUSY Gauge Theories and the Wilson Operator Expansion,” Nucl. Phys. B 277, 456–486 (1986).CrossRefGoogle Scholar
  49. 49.
    A. B. Pimenov and K. V. Stepanyantz, “Four-Loop Verification of an Algorithm for Summing Feynman Diagrams in the N = 1 Supersymmetric Electrodynamics,” Teor. Mat. Fiz. 147(2), 290–302 (2006) [Theor. Math. Phys. 147, 687–697 (2006)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Department of Theoretical Physics, Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations