Lorentz-invariant quantization of the Yang-Mills theory without Gribov ambiguity

  • A. A. Slavnov


The Yang-Mills theory in the covariant renormalizable gauge, which selects a unique representative in the class of gauge equivalent configurations, is discussed.


STEKLOV Institute Gauge Condition Mill Theory Supersymmetry Transformation External Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Faddeev and V. N. Popov, “Feynman Diagrams for the Yang-Mills Field,” Phys. Lett. B 25, 29–30 (1967).CrossRefGoogle Scholar
  2. 2.
    V. N. Popov and L. D. Faddeev, “Perturbation Theory for Gauge-Invariant Fields,” Preprint 67-36 (Inst. Teor. Fiz. Akad. Nauk Ukr. SSR, Kiev, 1967).Google Scholar
  3. 3.
    B. S. DeWitt, “Quantum Theory of Gravity. I: The Canonical Theory,” Phys. Rev. 160, 1113–1148 (1967).zbMATHCrossRefGoogle Scholar
  4. 4.
    B. S. DeWitt, “Quantum Theory of Gravity. II: The Manifestly Covariant Theory,” Phys. Rev. 162, 1195–1239 (1967).CrossRefGoogle Scholar
  5. 5.
    V. N. Gribov, “Quantization of Non-Abelian Gauge Theories,” Nucl. Phys. B 139, 1–19 (1978).MathSciNetCrossRefGoogle Scholar
  6. 6.
    I. M. Singer, “Some Remarks on the Gribov Ambiguity,” Commun. Math. Phys. 60, 7–12 (1978).zbMATHCrossRefGoogle Scholar
  7. 7.
    D. Zwanziger, “Action from the Gribov Horizon,” Nucl. Phys. B 321, 591–604 (1989).MathSciNetCrossRefGoogle Scholar
  8. 8.
    D. Zwanziger, “Local and Renormalizable Action from the Gribov Horizon,” Nucl. Phys. B 323, 513–544 (1989).MathSciNetCrossRefGoogle Scholar
  9. 9.
    T. Kugo and I. Ojima, “Local Covariant Operator Formalism of Non-Abelian Gauge Theories and Quark Confinement Problem,” Prog. Theor. Phys., Suppl. 66, 1–130 (1979).MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. A. Slavnov, “A Lorentz Invariant Formulation of the Yang-Mills Theory with Gauge Invariant Ghost Field Lagrangian,” J. High Energy Phys., No. 8, 047 (2008).Google Scholar
  11. 11.
    A. A. Slavnov, “Local Gauge-Invariant Infrared Regularization of Yang-Mills Theory,” Teor. Mat. Fiz. 154(2), 213–219 (2008) [Theor. Math. Phys. 154, 178–183 (2008)].MathSciNetGoogle Scholar
  12. 12.
    A. Quadri and A. A. Slavnov, “Renormalization of the Yang-Mills Theory in the Ambiguity-Free Gauge,” J. High Energy Phys., No. 7, 087 (2010); arXiv: 1002.2490 [hep-th].Google Scholar
  13. 13.
    M. Henneaux, “BRST Symmetry in the Classical and Quantum Theories of Gauge Systems,” in Quantum Mechanics of Fundamental Systems (Plenum Press, New York, 1988), Vol. 1, Proc. Int. Meeting, Santiago, 1985, pp. 117–144.Google Scholar
  14. 14.
    B. L. Voronov and I. V. Tyutin, “Formulation of Gauge Theories of General Form. I,” Teor. Mat. Fiz. 50(3), 333–343 (1982) [Theor. Math. Phys. 50, 218–225 (1982)].MathSciNetGoogle Scholar
  15. 15.
    B. L. Voronov and I. V. Tyutin, “Formulation of Gauge Theories of General Form. II: Gauge-Invariant Renormalizability and Renormalization Structure,” Teor. Mat. Fiz. 52(1), 14–28 (1982) [Theor. Math. Phys. 52, 628–637 (1982)].MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. A. Slavnov
    • 1
  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations