An affinity for affine quantum gravity



The main principle of affine quantum gravity is the strict positivity of the matrix \(\{ \hat g_{ab} (x)\} \) composed of the spatial components of the local metric operator. Canonical commutation relations are incompatible with this principle, and they can be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational constraint operators is formulated quite naturally as a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. Although perturbatively nonrenormalizable, gravity may possibly be understood nonperturbatively from a hard-core perspective that has proved valuable for specialized models.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “String Theory,” Wikipedia: The Free Encyclopedia (Jan. 5, 2011),
  2. 2.
    J. Polchinski, String Theory (Cambridge Univ. Press, Cambridge, 1998), Cambridge Monogr. Math. Phys.CrossRefGoogle Scholar
  3. 3.
    “Loop Quantum Gravity,” Wikipedia: The Free Encyclopedia (Jan. 9, 2011),
  4. 4.
    C. Rovelli, Quantum Gravity (Cambridge Univ. Press, Cambridge, 2004), Cambridge Monogr. Math. Phys.MATHCrossRefGoogle Scholar
  5. 5.
    J. R. Klauder, “Noncanonical Quantization of Gravity. I: Foundations of Affine Quantum Gravity,” J. Math. Phys. 40, 5860–5882 (1999); arXiv: gr-qc/9906013.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    J. R. Klauder, “Noncanonical Quantization of Gravity. II: Constraints and the Physical Hilbert Space,” J. Math. Phys. 42, 4440–4465 (2001); arXiv: gr-qc/0102041.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    J. R. Klauder, “Ultralocal Fields and Their Relevance for Reparametrization-Invariant Quantum Field Theory,” J. Phys. A: Math. Gen. 34, 3277–3288 (2001); arXiv: quant-ph/0012076.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    N. Aronszajn, “La théorie des noyaux reproduisants et ses applications. Première partie,” Proc. Cambridge Philos. Soc. 39, 133–153 (1943).MathSciNetCrossRefGoogle Scholar
  9. 9.
    N. Aronszajn, “Theory of Reproducing Kernels,” Trans. Am. Math. Soc. 68, 337–404 (1950).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    H. Meschkowski, Hilbertsche Räume mit Kernfunktion (Springer, Berlin, 1962).MATHGoogle Scholar
  11. 11.
    J. R. Klauder, “Quantization = Geometry + Probability,” in Probabilistic Methods in Quantum Field Theory and Quantum Gravity, Ed. by P. H. Damgaard, H. Hüffel, and A. Rosenblum (Plenum Press, New York, 1990), pp. 73–85.Google Scholar
  12. 12.
    G. Watson and J. R. Klauder, “Metric and Curvature in Gravitational Phase Space,” Class. Quantum Grav. 19, 3617–3623 (2002).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    J. R. Klauder, “Universal Procedure for Enforcing Quantum Constraints,” Nucl. Phys. B 547, 397–412 (1999); arXiv: hep-th/9901010.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    J. R. Klauder, “Coherent State Quantization of Constraint Systems,” Ann. Phys. 254, 419–453 (1997); arXiv: quant-ph/9604033.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    J. R. Klauder, “Quantization of Constrained Systems,” in Methods of Quantization (Springer, Berlin, 2001), Lect. Notes Phys. 572, pp. 143–182; arXiv: hep-th/0003297.CrossRefGoogle Scholar
  16. 16.
    J. S. Little and J. R. Klauder, “Elementary Model of Constraint Quantization with an Anomaly,” Phys. Rev. D 71, 085014 (2005).MathSciNetCrossRefGoogle Scholar
  17. 17.
    J. R. Klauder, “Field Structure through Model Studies: Aspects of Nonrenormalizable Theories,” Acta Phys. Austriaca, Suppl. 11, 341–387 (1973).Google Scholar
  18. 18.
    J. R. Klauder, “On the Meaning of a Non-renormalizable Theory of Gravitation,” Gen. Relativ. Gravit. 6, 13–19 (1975).MathSciNetCrossRefGoogle Scholar
  19. 19.
    J. R. Klauder, “Continuous and Discontinuous Perturbations,” Science 199, 735–740 (1978).CrossRefGoogle Scholar
  20. 20.
    J. R. Klauder, Beyond Conventional Quantization (Cambridge Univ. Press, Cambridge, 2000, 2005).MATHGoogle Scholar
  21. 21.
    O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type (Am. Math. Soc., Providence, RI, 1968), Transl. Math. Monogr. 23.Google Scholar
  22. 22.
    J. R. Klauder, “Taming Nonrenormalizability,” J. Phys. A.: Math. Theor. 42, 335208 (2009); arXiv: 0811.3386.MathSciNetCrossRefGoogle Scholar
  23. 23.
    J. R. Klauder, “Rethinking Renormalization,” in The Legacy of Alladi Ramakrishnan in the Mathematical Sciences, Ed. by K. Alladi, J.R. Klauder, C.R. Rao (Springer, New York, 2010), pp. 503–528; arXiv: 0904.2869.CrossRefGoogle Scholar
  24. 24.
    R. Fernández, J. Fröhlich, and A. D. Sokal, Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (Springer, Berlin, 1992).MATHGoogle Scholar
  25. 25.
    J. R. Klauder, “Weak Correspondence Principle,” J. Math. Phys. 8, 2392–2399 (1967).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Department of Physics and Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations