Advertisement

Logarithmic potential β-ensembles and Feynman graphs

  • L. O. ChekhovEmail author
Article

Abstract

We present a diagrammatic technique for calculating the free energy of the matrix eigenvalue model (the model with an arbitrary power of the Vandermonde determinant) to all orders of the 1/N expansion in the case when the limiting eigenvalue distribution spans an arbitrary (but fixed) number of disjoint intervals (curves) and when logarithmic terms are present. This diagrammatic technique is corrected and refined as compared to our first paper with B. Eynard of 2006.

Keywords

STEKLOV Institute Conformal Block Bergman Kernel FEYNMAN Graph Black Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. F. Alday, D. Gaiotto, and Y. Tachikawa, “Liouville Correlation Functions from Four-Dimensional Gauge Theories,” Lett. Math. Phys. 91, 167–197 (2010); arXiv: 0906.3219 [hep-th].MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    G. Borot, B. Eynard, S. N. Majumdar, and C. Nadal, “Large Deviations of the Maximal Eigenvalue of Random Matrices,” arXiv: 1009.1945 [math-ph].Google Scholar
  3. 3.
    L. O. Chekhov, “Genus-One Correction to Multicut Matrix Model Solutions,” Teor. Mat. Phys. 141(3), 358–374 (2004) [Theor. Math. Phys. 141, 1640–1653 (2004)]; arXiv: hep-th/0401089.MathSciNetGoogle Scholar
  4. 4.
    L. Chekhov and B. Eynard, “Hermitian Matrix Model Free Energy: Feynman Graph Technique for All Genera,” J. High Energy Phys., No. 3, 014 (2006).Google Scholar
  5. 5.
    L. Chekhov and B. Eynard, “Matrix Eigenvalue Model: Feynman Graph Technique for All Genera,” J. High Energy Phys., No. 12, 026 (2006).Google Scholar
  6. 6.
    R. Dijkgraaf and C. Vafa, “Toda Theories, Matrix Models, Topological Strings, and N = 2 Gauge Systems,” arXiv: 0909.2453 [hep-th].Google Scholar
  7. 7.
    T. Eguchi and K. Maruyoshi, “Penner Type Matrix Model and Seiberg-Witten Theory,” J. High Energy Phys., No. 2, 022 (2010); arXiv: 0911.4797 [hep-th].Google Scholar
  8. 8.
    B. Eynard, “Topological Expansion for the 1-Hermitian Matrix Model Correlation Functions,” J. High Energy Phys., No. 11, 031 (2004); arXiv: hep-th/0407261.Google Scholar
  9. 9.
    A. Mironov and A. Morozov, “The Power of Nekrasov Functions,” Phys. Lett. B 680, 188–194 (2009); arXiv: 0908.2190 [hep-th].MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Marshakov, A. Mironov, and A. Morozov, “On Non-conformal Limit of the AGT Relations,” Phys. Lett. B 682, 125–129 (2009); arXiv: 0909.2052 [hep-th].MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Marshakov, A. Mironov, and A. Morozov, “Zamolodchikov Asymptotic Formula and Instanton Expansion in N = 2 SUSY N f = 2N c QCD,” J. High Energy Phys., No. 11, 048 (2009); arXiv: 0909.3338 [hep-th].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Alikhanov Institute for Theoretical and Experimental PhysicsMoscowRussia
  3. 3.Laboratoire J.-V. PonceletMoscowRussia
  4. 4.Concordia UniversityMontrealCanada

Personalised recommendations