Vertical passage of obstacles by an aircraft under wind disturbance

  • S. A. Ganebny
  • A. I. Krasov
  • V. S. Patsko
  • M. A. Smol’nikova
Article

Abstract

The adaptive control method is applied to the problem of the vertical passage of obstacles by an aircraft under wind disturbance. Constructions of the theory of differential games are used.

Keywords

adaptive control differential games aircraft control wind disturbance numerical constructions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974) [in Russian].MATHGoogle Scholar
  2. 2.
    N. N. Krasovskii and A. I. Subbotin, Game-Theoretical Control Problems (Springer-Verlag, New York, 1988).MATHGoogle Scholar
  3. 3.
    S. A. Ganebny, S. S. Kumkov, and V. S. Patsko, Prikl. Mat. Mekh. 70(5), 753 (2006).MathSciNetGoogle Scholar
  4. 4.
    S. A. Ganebny, S. S. Kumkov, and V. S. Patsko, Prikl. Mat. Mekh. 73(4), 573 (2009).MathSciNetGoogle Scholar
  5. 5.
    V. M. Kein, Optimization of Control Systems by a Minimax Criterion (Nauka, Moscow, 1985) [in Russian].Google Scholar
  6. 6.
    A. Miele, T. Wang, and W. W. Melvin, J. Optim. Theory Appl. 49(1), 1 (1986).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    A. Miele, T. Wang, C. Y. Tzeng, and W. W. Melvin, J. Optim. Theory Appl. 55(2), 165 (1987).CrossRefMATHGoogle Scholar
  8. 8.
    Y. N. Chen and S. Pandey, Optimal Control Appl. Methods 10(1), 65 (1989).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    G. Leitmann and S. Pandey, J. Optim. Theory Appl. 70(1), 25 (1991).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    R. Bulirsch, F. Montrone, and H. J. Pesch, J. Optim. Theory Appl. 70(1), 1 (1991).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    V. L. Turova, Trudy Inst. Mat. Mekh. UrO RAN 2, 188 (1992).MATHMathSciNetGoogle Scholar
  12. 12.
    N. Suebe, R. Moitie, and G. Leitmann, Set-Valued Anal. 8, 163 (2000).CrossRefMathSciNetGoogle Scholar
  13. 13.
    V. S. Patsko, N. D. Botkin, V. M. Kein, et al., J. Optim. Theory Appl. 83(2), 237 (1994).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    N. D. Botkin and V. S. Patsko, Analysis of the Application of Methods from the Theory of Differential Games to Modeling Wind Disturbances (Sverdlovsk, 1987), Available from VINITI, No. 01880003467 [in Russian].Google Scholar
  15. 15.
    Systems of Digital Control of an Airplane, Ed. by A. D. Aleksandrov and S. M. Fedorov (Moscow, Mashinostroenie, 1983) [in Russian].Google Scholar
  16. 16.
    N. D. Botkin, M. A. Zarkh, V. N. Kein, et al., Izv. Ross. Akad. Nauk, Ser. Tekh. Kibernet. 1, 68 (1993).Google Scholar
  17. 17.
    I. V. Ostoslavskii and I. V. Strazheva, Flight Dynamics: Aircraft Trajectories (Moscow, Mashinostroenie, 1969) [in Russian].Google Scholar
  18. 18.
    R. Isaacs, Differential Games (Wiley, New York, 1965; Mir, Moscow, 1967).MATHGoogle Scholar
  19. 19.
    C. E. Dole, Flight Theory and Aerodynamics (Wiley, New York, 1981).Google Scholar
  20. 20.
    M. Ivan, in Proc. AIAA Flight Simulation Technologies Conf. (St. Louis, MO, 1985), pp. 57–61.Google Scholar
  21. 21.
    N. D. Botkin, V. S. Patsko, and V. L. Turova, Development of Algorithms for Constructing Extremal Wind Disturbances (Sverdlovsk, 1987), Available from VINITI, No. 01880003467 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. A. Ganebny
    • 1
  • A. I. Krasov
    • 2
  • V. S. Patsko
    • 1
  • M. A. Smol’nikova
    • 3
  1. 1.Institute of Mathematics and MechanicsUral Division of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.NITA CompanySt. PetersburgRussia
  3. 3.University of Civil AviationSt. PetersburgRussia

Personalised recommendations