Aircraft landing control under wind disturbances

Article

Abstract

Results from differential game theory are applied to construct an adaptive control in linear systems with an unknown level of dynamic disturbances. The efficiency of the method is exemplified by a problem of aircraft landing under wind disturbance.

Keywords

adaptive control differential games aircraft landing control wind disturbance numerical methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Kein, Optimization of Control Systems by a Minimax Criterion (Nauka, Moscow, 1985) [in Russian].Google Scholar
  2. 2.
    V. A. Korneev, A. A. Melikyan, and I. N. Titovskii, Izv. Akad. Nauk SSSR, Ser. Tekh. Kibernet. 3, 132 (1985).Google Scholar
  3. 3.
    A. Miele, T. Wang, and W. W. Melvin, J. Optim. Theory Appl. 49(1), 1 (1986).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Miele, T. Wang, H. Wang, and W. W. Melvin, J. Optim. Theory Appl. 57(1), 1 (1988).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    G. Leitmann and S. Pandey, J. Optim. Theory Appl. 70(1), 25 (1991).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    V. S. Patsko, N. D. Botkin, V. M. Kein, et al., J. Optim. Theory Appl. 83(2), 237 (1994).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. A. Dahleh and J. B. Pearson, IEEE Trans. Automat. Control. 32(10), 889 (1987).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. E. Barabanov, Synthesis of Minimax Regualtors (S.-Peterb. Gos. Univ., St. Petersburg, 1996) [in Russian].Google Scholar
  9. 9.
    B. T. Polyak and P. S. Shcherbakov, Robust Stability and Control (Nauka, Moscow, 2002) [in Russian].Google Scholar
  10. 10.
    V. F. Sokolov, Systems Control Lett. 57(4), 348 (2008).MATHMathSciNetGoogle Scholar
  11. 11.
    N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974) [in Russian].MATHGoogle Scholar
  12. 12.
    N. N. Krasovskii and A. I. Subbotin, Game-Theoretical Control Problems (Springer-Verlag, New York, 1988).MATHGoogle Scholar
  13. 13.
    N. N. Krasovskii, Control of a Dynamical System (Nauka, Moscow, 1985) [in Russian].Google Scholar
  14. 14.
    Algorithms and Programs for Solving Linear Differential Games, Ed. by A. I. Subbotin and V. S. Patsko (Inst. Mat. Mekh. UNTs AN SSSR, Sverdlovsk, 1984) [in Russian].Google Scholar
  15. 15.
    M. A. Zarkh and V. S. Patsko, Izv. Akad. Nauk SSSR, Ser. Tekh. Kibernet. 6, 162 (1987).Google Scholar
  16. 16.
    A. M. Taras’ev, A. A. Uspenskii, and V. N. Ushakov, in Control in Dynamical Systems, Ed. by A. I. Subbotin and V. N. Ushakov (Inst. Mat. Mekh. UrO RAN, Sverdlovsk, 1990), pp. 93–100 [in Russian].Google Scholar
  17. 17.
    N. D. Botkin and E. A. Ryazantseva, Trudy Inst. Mat. Mekh. UrO RAN 2, 128 (1992).MATHGoogle Scholar
  18. 18.
    M. A. Zarkh and A. G. Ivanov, Trudy Inst. Mat. Mekh. UrO RAN 2, 140 (1992).MATHMathSciNetGoogle Scholar
  19. 19.
    N. L. Grigorenko, Yu. N. Kiselev, N. V. Lagunova, et al., in Mathematical Modeling (Mosk. Gos. Univ., Moscow, 1993), pp. 296–316 [in Russian].Google Scholar
  20. 20.
    E. S. Polovinkin, G. E. Ivanov, M. V. Balashov, et al., Mat. Sb. 192(10), 95 (2001).MathSciNetGoogle Scholar
  21. 21.
    S. A. Ganebny, S. S. Kumkov, and V. S. Patsko, Prikl. Mat. Mekh. 70(5), 753 (2006).MathSciNetGoogle Scholar
  22. 22.
    S. A. Ganebny, S. S. Kumkov, and V. S. Patsko, in Advances in Mechanics: Dynamics and Control, Proc. of 14th Intern. Workshop, Ed. by F. L. Chernous’ko, G. V. Kostin, and V. V. Saurin (Nauka, Moscow, 2008), pp. 125–132 [in Russian].Google Scholar
  23. 23.
    S. A. Ganebny, S. S. Kumkov, and V. S. Patsko, Prikl. Mat. Mekh. 73(4), 573 (2009).MathSciNetGoogle Scholar
  24. 24.
    N. D. Botkin, V. M. Kein, A. I. Krasov, and V. S. Patsko, Control of Aircraft Lateral Motion During Landing in the Presence of Wind Disturbances (Academy of Civil Aviation, Leningrad, 1983), Available from VINITI, No. 81 104 592 [in Russian].Google Scholar
  25. 25.
    V. M. Kein, A. N. Parikov, and M. Yu. Smurov, Prikl. Mat. Mekh. 44(3), 434 (1980).Google Scholar
  26. 26.
    N. D. Botkin and V. S. Patsko, Analysis of the Application of Methods form the Theory of Differential Games to Modeling Wind Disturbances (Sverdlovsk, 1987), Available from VINITI, No. 01880003467 [in Russian].Google Scholar
  27. 27.
    M. Ivan, in Proc. AIAA Flight Simulation Technologies Conf., (St. Louis, MO, 1985), pp. 57–61.Google Scholar
  28. 28.
    N. D. Botkin, V. S. Patsko, and V. L. Turova, Development of Algorithms for Constructing Extremal Wind Disturbances (Sverdlovsk, 1987), Available from VINITI, No. 01880003467 [in Russian].Google Scholar
  29. 29.
    N. D. Botkin, M. A. Zarkh, V. N. Kein, et al., Izv. Ross. Akad. Nauk, Ser. Tekh. Kibernet. 1, 68 (1993).Google Scholar
  30. 30.
    S. A. Ganebny, S. S. Kumkov, V. S. Patsko, and S. G. Pyatko, in Advances in Dynamic Games and Applications, Ed. by S. Jøgensen, M. Quincampoix, and T. L. Vincent (Birkhäuser, Boston, 2007), Vol. 9, pp. 69–92.CrossRefGoogle Scholar
  31. 31.
    S. A. Ganebny, S. S. Kumkov, V. S. Patsko, and S. G. Pyatko, Robust Control in Game Problems with Linear Dynamics, Preprint (Inst. Math. Mech., Yekaterinburg, 2005).Google Scholar
  32. 32.
    I. V. Ostoslavskii and I. V. Strazheva, Flight Dynamics: Aircraft Trajectories (Moscow, Mashinostroenie, 1969) [in Russian].Google Scholar
  33. 33.
    Systems of Digital Control of an Airplane, Ed. by A. D. Aleksandrov and S. M. Fedorov (Moscow, Mashinostroenie, 1983) [in Russian].Google Scholar
  34. 34.
    E. A. Isakova, G. V. Logunova, and V. S. Patsko, in Algorithms and Programs for Solving Linear Differential Games, Ed. by A. I. Subbotin and V. S. Patsko (Inst. Mat. Mekh. UNTs AN SSSR, Sverdlovsk, 1984), pp. 127–158 [in Russian].Google Scholar
  35. 35.
    C. E. Dole, Flight Theory and Aerodynamics (Wiley, New York, 1981).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Mathematics and MechanicsUral Division of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Aeronavigatsiya Research InstituteMoscowRussia

Personalised recommendations