Sharpening of the estimates for relative widths of classes of differentiable functions

Article

Abstract

We improve the earlier obtained upper estimates for the least value of the coefficient M for which the Kolmogorov widths dn(WCr, C) of the function class WCr are equal to the relative widths Kn(WCr, MWCj, C) of the class WCr with respect to the class MWCj, j < r.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kolmogoroff, “Über die beste Annäherung von Funkitionen einer gegebenen Funktionenklasse,” Ann. Math. 37, 107–110 (1936).CrossRefMathSciNetGoogle Scholar
  2. 2.
    V. N. Konovalov, “Estimates of Kolmogorov-Type Widths for Classes of Differentiable Periodic Functions,” Mat. Zametki 35(3), 369–380 (1984) [Math. Notes 35, 193–199 (1984)].MATHMathSciNetGoogle Scholar
  3. 3.
    V. F. Babenko, “On Best Uniform Approximations by Splines in the Presence of Restrictions on Their Derivatives,” Mat. Zametki 50(6), 24–30 (1991) [Math. Notes 50, 1227–1232 (1991)].MathSciNetGoogle Scholar
  4. 4.
    Yu. N. Subbotin and S. A. Telyakovskii, “Exact Values of Relative Widths of Classes of Differentiable Functions,” Mat. Zametki 65(6), 871–879 (1999) [Math. Notes 65, 731–738 (1999)].MathSciNetGoogle Scholar
  5. 5.
    Yu. N. Subbotin and S. A. Telyakovskii, “On Relative Widths of Classes of Differentiable Functions,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 248, 250–261 (2005) [Proc. Steklov Inst. Math. 248, 243–254 (2005)].MathSciNetGoogle Scholar
  6. 6.
    N. P. Korneichuk, Extremal Problems in Approximation Theory (Nauka, Moscow, 1976) [in Russian].Google Scholar
  7. 7.
    A. S. Belov, “Examples of Trigonometric Series with Non-negative Partial Sums,” Mat. Sb. 186(4), 21–46 (1995) [Sb. Math. 186, 485–510 (1995)].MathSciNetGoogle Scholar
  8. 8.
    L. Vietoris, “Über das Vorzeichen gewisser trigonometrischer Summen,” Österr. Akad. Wiss., Math.-Naturw. Kl., S.-Ber., Abt. II 167, 125–135 (1958).MATHGoogle Scholar
  9. 9.
    L. Vietoris, “Über das Vorzeichen gewisser trigonometrischer Summen. II,” Österr. Akad. Wiss., Math.-Naturw. Kl. Anz. 10, 192–193 (1959).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Mathematics and MechanicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations