Automorphisms of P 8 singularities and the complex crystallographic groups

  • Victor Goryunov
  • Dmitry Kerner


The paper completes the study of symmetries of parabolic function singularities with relation to complex crystallographic groups that was started by the first co-author and his collaborator. We classify smoothable automorphisms of P 8 singularities which split the kernel of the intersection form on the second homology. For such automorphisms, the monodromy groups acting on the duals to the eigenspaces with degenerate intersection form are then identified as some of complex affine reflection groups tabled by V.L. Popov.


Intersection Form STEKLOV Institute Intersection Number Kernel Character Dynkin Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Arnold, “Normal Forms of Functions Near Degenerate Critical Points, the Weyl Groups A k, D k, E k and Lagrangian Singularities,” Funkts. Anal. Prilozh. 6(4), 3–25 (1972) [Funct. Anal. Appl. 6, 254–272 (1972)].Google Scholar
  2. 2.
    V. I. Arnold, “Critical Points of Functions on a Manifold with Boundary, the Simple Lie Groups B k, C k and F 4 and Singularities of Evolutes,” Usp. Mat. Nauk 33(5), 91–105 (1978) [Russ. Math. Surv. 33 (5), 99–116 (1978)].Google Scholar
  3. 3.
    V. I. Arnold, A. N. Varchenko, and S. M. Gusein-Zade, Singularities of Differentiable Maps: Monodromy and Asymptotics of Integrals (Nauka, Moscow, 1984); Engl. transl.: V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps (Birkhäuser, Boston, 1988), Vol. 2, Monogr. Math. 83.Google Scholar
  4. 4.
    V. I. Arnold, V. A. Vasil’ev, V. V. Goryunov, and O. V. Lyashko, Singularities. I: Local and Global Theory (VINITI, Moscow, 1988), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 6: Dynamical Systems-6. Engl. transl.: V. I. Arnold, V. V. Goryunov, O. V. Lyashko, and V. A. Vasil’ev, Singularity Theory. I: Singularities. Local and Global Theory (Springer, Berlin, 1993), Encycl. Math. Sci. 6: Dynamical Systems VI.Google Scholar
  5. 5.
    V. I. Arnold, V. A. Vasil’ev, V. V. Goryunov, and O. V. Lyashko, Singularities. II: Classification and Applications (VINITI, Moscow, 1989), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 39: Dynamical Systems-8. Engl. transl.: V. I. Arnold, V. V. Goryunov, O. V. Lyashko, and V. A. Vasil’ev, Singularity Theory. II: Classification and Applications (Springer, Berlin, 1993), Encycl. Math. Sci. 39: Dynamical Systems VIII.Google Scholar
  6. 6.
    N. Bourbaki, Éléments de mathématique, Fasc. XXXIV: Groupes et alg`ebres de Lie, Chapitres 4, 5 et 6 (Hermann, Paris, 1968).Google Scholar
  7. 7.
    E. Brieskorn, “Die Monodromie der isolierten Singularitäten von Hyperflächen,” Manuscr. Math. 2, 103–161 (1970).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    E. Brieskorn, “Singular Elements of Semi-simple Algebraic Groups,” in Actes Congr. Int. Math., Nice, 1970 (Gauthier-Villars, Paris, 1971), Vol. 2, pp. 279–284.Google Scholar
  9. 9.
    A. B. Givental’, “Singular Lagrangian Manifolds and Their Lagrangian Mappings,” in Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Noveishie Dostizheniya (VINITI, Moscow, 1988), Vol. 33, pp. 55–112 [J. Sov. Math. 52 (4), 3246–3278 (1990)].Google Scholar
  10. 10.
    V. V. Goryunov, “Unitary Reflection Groups Associated with Singularities of Functions with Cyclic Symmetry,” Usp. Mat. Nauk 54(5), 3–24 (1999) [Russ. Math. Surv. 54, 873–893 (1999)].MathSciNetGoogle Scholar
  11. 11.
    V. V. Goryunov, “Unitary Reflection Groups and Automorphisms of Simple Hypersurface Singularities,” in New Developments in Singularity Theory (Kluwer, Dordrecht, 2001), pp. 305–328.Google Scholar
  12. 12.
    V. V. Goryunov, “Symmetric X 9 Singularities and Complex Affine Reflection Groups,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 258, 49–57 (2007) [Proc. Steklov Inst. Math. 258, 44–52 (2007)].MathSciNetGoogle Scholar
  13. 13.
    V. V. Goryunov and C. E. Baines, “Cyclically Equivariant Function Singularities and Unitary Reflection Groups G(2m, 2,n), G 9, G 31,” Algebra Anal. 11(5), 74–91 (1999) [St. Petersburg Math. J. 11 (5), 761–774 (2000)].MathSciNetGoogle Scholar
  14. 14.
    V. V. Goryunov and S. H. Man, “The Complex Crystallographic Groups and Symmetries of J 10,” in Singularity Theory and Its Applications (Math. Soc. Japan, Tokyo, 2006), Adv. Stud. Pure Math. 43, pp. 55–72.Google Scholar
  15. 15.
    S. M. Husein-Zade, “The Monodromy Groups of Isolated Singularities of Hypersurfaces,” Usp. Mat. Nauk 32(2), 23–65 (1977) [Russ. Math. Surv. 32 (2), 23–69 (1977)].zbMATHGoogle Scholar
  16. 16.
    M. C. Hughes, “Complex Reflection Groups,” Commun. Algebra 18, 3999–4029 (1990).zbMATHCrossRefGoogle Scholar
  17. 17.
    E. Looijenga, “On the Semi-universal Deformation of a Simple-Elliptic Hypersurface Singularity. Part II: The Discriminant,” Topology 17, 23–40 (1978).zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    G. Malle, “Presentations for Crystallographic Complex Reflection Groups,” Transform. Groups 1(3), 259–277 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    P. Orlik and L. Solomon, “Singularities. II: Automorphisms of Forms,” Math. Ann. 231, 229–240 (1978).zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    V. L. Popov, Discrete Complex Reflection Groups (Rijksuniv. Utrecht, Utrecht, 1982), 89 pp., Commun. Math. Inst., Rijksuniv. Utrecht 15.Google Scholar
  21. 21.
    G. C. Shephard and J. A. Todd, “Finite Unitary Reflection Groups,” Can. J. Math. 6, 274–304 (1954).zbMATHMathSciNetGoogle Scholar
  22. 22.
    P. Slodowy, Simple Singularities and Simple Algebraic Groups (Springer, Berlin, 1980), Lect. Notes Math. 815.zbMATHGoogle Scholar
  23. 23.
    C. T. C. Wall, “A Note on Symmetry of Singularities,” Bull. London Math. Soc. 12, 169–175 (1980).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUk
  2. 2.Department of MathematicsBen Gurion University of the NegevBe’er ShevaIsrael

Personalised recommendations