Advertisement

Multiscale limit for finite-gap sine-Gordon solutions and calculation of topological charge using theta-functional formulae

  • P. G. Grinevich
  • K. V. Kaipa
Article
  • 34 Downloads

Abstract

We introduce the so-called multiscale limit for spectral curves associated with real finite-gap sine-Gordon solutions. This technique allows us to solve the old problem of calculating the density of the topological charge for real finite-gap sine-Gordon solutions directly from the θ-functional formulae.

Keywords

STEKLOV Institute Elliptic Curf Spectral Curve Topological Charge Hyperelliptic Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Method for Solving the Sine-Gordon Equation,” Phys. Rev. Lett. 30(25), 1262–1264 (1973).CrossRefMathSciNetGoogle Scholar
  2. 2.
    I. V. Cherednik, “Reality Conditions in ‘Finite-Zone’ Integration,” Dokl. Akad. Nauk SSSR 252(5), 1104–1108 (1980) [Sov. Phys. Dokl. 25, 450–452 (1980)].MathSciNetGoogle Scholar
  3. 3.
    B. A. Dubrovin and S. M. Natanzon, “Real Two-Zone Solutions of the Sine-Gordon Equation,” Funkts. Anal. Prilozh. 16(1), 27–43 (1982) [Funct. Anal. Appl. 16, 21–33 (1982)].MathSciNetGoogle Scholar
  4. 4.
    B. A. Dubrovin and S. P. Novikov, “Algebro-Geometric Poisson Brackets for Real Finite-Zone Solutions of the Sine-Gordon Equation and the Nonlinear Schrödinger Equation,” Dokl. Akad. Nauk SSSR 267(6), 1295–1300 (1982) [Sov. Math. Dokl. 26 (3), 760–765 (1982)].MathSciNetGoogle Scholar
  5. 5.
    N. M. Ercolani and M. G. Forest, “The Geometry of Real Sine-Gordon Wavetrains,” Commun. Math. Phys. 99(1), 1–49 (1985).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    H. M. Farkas and I. Kra, Riemann Surfaces, 2nd ed. (Springer, New York, 1992).zbMATHGoogle Scholar
  7. 7.
    P. G. Grinevich and S. P. Novikov, “Real Finite-Zone Solutions of the Sine-Gordon Equation: A Formula for the Topological Charge,” Usp. Mat. Nauk 56(5), 181–182 (2001) [Russ. Math. Surv. 56, 980–981 (2001)].MathSciNetGoogle Scholar
  8. 8.
    P. G. Grinevich and S. P. Novikov, “Topological Charge of the Real Periodic Finite-Gap Sine-Gordon Solutions,” Commun. Pure Appl. Math. 56(7), 956–978 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. R. Its and V. P. Kotlyarov, “Explicit Formulas for Solutions of the Nonlinear Schrödinger Equation,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 11, 965–968 (1976).Google Scholar
  10. 10.
    V. A. Kozel and V. P. Kotlyarov, “Almost Periodic Solutions of the Equation u ttu xx +sin u = 0,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 10, 878–881 (1976).Google Scholar
  11. 11.
    S. P. Novikov, “Algebrotopological Approach to the Reality Problem. Real Action Variables in the Theory of Finite-Zone Solutions of the Sine-Gordon Equation,” Zap. Nauchn. Semin. LOMI 133, 177–196 (1984) [J. Sov. Math. 31 (6), 3373–3387 (1985)].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations