Squeezed quantum states on an interval and uncertainty relations for nanoscale systems

Article

Abstract

We construct families of squeezed quantum states on an interval and analyze their asymptotic behavior. We study the localization properties of a kind of such states constructed on the basis of the theta function. For the coordinate and momentum dispersions of a quantum particle on an interval, we obtain estimates that apply, in particular, to nanoscale systems.

Keywords

Wave Packet Coherent State STEKLOV Institute Uncertainty Relation Asymptotic Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Schrödinger, “Der stetige Übergang von der Mikro- zur Makromechanik,” Naturwissenschaften 14, 664–666 (1926).CrossRefGoogle Scholar
  2. 2.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932; Nauka, Moscow, 1964).MATHGoogle Scholar
  3. 3.
    W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Weinheim, 2001; Fizmatlit, Moscow, 2005).MATHCrossRefGoogle Scholar
  4. 4.
    Coherent States: Applications in Physics and Mathematical Physics, Ed. by J. R. Klauder and B.-S. Skagerstam (World Sci., Singapore, 1985).MATHGoogle Scholar
  5. 5.
    A. M. Perelomov, Generalized Coherent States and Their Applications (Springer, Berlin, 1986; Nauka, Moscow, 1987).MATHGoogle Scholar
  6. 6.
    A. Weil, “Sur certains groupes d’opérateurs unitaires,” Acta Math. 111, 143–211 (1964).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    D. Judge, “On the Uncertainty Relation for Angle Variables,” Nuovo Cimento 31(2), 332–340 (1964).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. De Biévre and J. A. González, “Semiclassical Behaviour of Coherent States on the Circle,” in Quantization and Coherent States Methods (World Sci., Singapore, 1993), pp. 152–157.Google Scholar
  9. 9.
    K. Kowalski and J. Rembieliński, “On the Uncertainty Relations and Squeezed States for the Quantum Mechanics on a Circle,” J. Phys. A: Math. Gen. 35, 1405–1414 (2002).MATHCrossRefGoogle Scholar
  10. 10.
    J. A. González, M. A. del Olmo, and J. Tosiek, “Quantum Mechanics on the Cylinder,” arXiv: quant-ph/0306010.Google Scholar
  11. 11.
    K. Kowalski and J. Rembieliński, “Coherent States for the Quantum Mechanics on a Compact Manifold,” J. Phys. A: Math. Theor. 41(30), 304021 (2008).Google Scholar
  12. 12.
    K. E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation (J. Wiley & Sons, New York, 1992).Google Scholar
  13. 13.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 2: Fourier Analysis, Self-Adjointness (Academic, New York, 1975; Mir, Moscow, 1978).Google Scholar
  14. 14.
    M. A. Naimark, Linear Differential Operators (Nauka, Moscow, 1969) [in Russian].Google Scholar
  15. 15.
    P. Garbaczewski and W. Karwowski, “Impenetrable Barriers and Canonical Quantization,” Am. J. Phys. 72(7), 924–933 (2004).CrossRefGoogle Scholar
  16. 16.
    S. P. Novikov, “1. Classical and Modern Topology. 2. Topological Phenomena in Real World Physics,” arXiv:math-ph/0004012.Google Scholar
  17. 17.
    A. S. Davydov, Quantum Mechanics (Nauka, Moscow, 1973) [in Russian].Google Scholar
  18. 18.
    S. M. Voronin and A. A. Karatsuba, The Riemann Zeta-Function (de Gruyter, Berlin, 1992; Fizmatlit, Moscow, 1994).MATHGoogle Scholar
  19. 19.
    D. Mumford, Tata Lectures on Theta. I, II (Birkhäuser, Boston, 1983, 1984; Mir, Moscow, 1988).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations