On nonlinear equations of p-adic strings for scalar tachyon fields

  • V. S. Vladimirov
Article

Abstract

We consider boundary value problems for open and closed p-adic strings for scalar tachyon fields. Estimates for solutions to these problems and possible ways of constructing these solutions are obtained by reducing the problems to linear parabolic equations with nonlinear boundary conditions. We give an application of Gauss-type quadrature formulas to the numerical solution of the boundary value problems, and discuss the possibility of using these methods in multidimensional problems (d = 2).

Keywords

Periodic Solution STEKLOV Institute Open String Quadrature Formula Close String 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. H. Frampton and Y. Okada, “Effective Scalar Field Theory of p-adic String,” Phys. Rev. D 37(10), 3077–3079 (1988).CrossRefMathSciNetGoogle Scholar
  2. 2.
    L. Brekke and P. G. O. Freund, “p-Adic Numbers in Physics,” Phys. Rep. 233(1), 1–66 (1993).CrossRefMathSciNetGoogle Scholar
  3. 3.
    N. Moeller and M. Schnabl, “Tachyon Condensation in Open-Closed p-adic String Theory,” J. High Energy Phys., No. 01, 011 (2004).Google Scholar
  4. 4.
    V. S. Vladimirov, “Nonlinear Equations for p-adic Open, Closed, and Open-Closed Strings,” Teor. Mat. Fiz. 149(3), 354–367 (2006) [Theor. Math. Phys. 149, 1604–1616 (2006)].Google Scholar
  5. 5.
    M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory (Cambridge Univ. Press, Cambridge, 1987, 1988; Mir, Moscow, 1990), Vols. 1, 2.MATHGoogle Scholar
  6. 6.
    E. Witten, “Non-commutative Geometry and String Field Theory,” Nucl. Phys. B 268, 253–294 (1986).CrossRefMathSciNetGoogle Scholar
  7. 7.
    T. G. Erler and D. J. Gross, “Locality, Causality, and an Initial Value Formulation for Open String Field Theory,” arXiv: hep-th/0406199.Google Scholar
  8. 8.
    I. V. Volovich, “p-Adic String,” Class. Quantum Grav. 4, L83–L87 (1987).CrossRefMathSciNetGoogle Scholar
  9. 9.
    L. Brekke, P. G. O. Freund, M. Olson, and E. Witten, “Non-Archimedean String Dynamics,” Nucl. Phys. B 302, 365–402 (1988).CrossRefMathSciNetGoogle Scholar
  10. 10.
    V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (Nauka, Moscow, 1994; World Sci., Singapore, 1994).Google Scholar
  11. 11.
    I. Ya. Aref’eva, A. S. Koshelev, and L. V. Joukovskaya, “Time Evolution in Superstring Field Theory on Non-BPS Brane. I: Rolling Tachyon and Energy-Momentum Conservation,” J. High Energy Phys., No. 09, 012 (2003); arXiv: hep-th/0301137.Google Scholar
  12. 12.
    I. Ya. Aref’eva and A. S. Koshelev, “Cosmic Acceleration and Crossing of w = −1 Barrier in Non-local Cubic Superstring Field Theory Model,” J. High Energy Phys., No. 02, 041 (2007).Google Scholar
  13. 13.
    G. Calcagni, “Cosmological Tachyon from Cubic String Field Theory,” J. High Energy Phys., No. 05, 012 (2006); arXiv: hep-th/0512259.Google Scholar
  14. 14.
    I. Ya. Aref’eva, “Nonlocal String Tachyon as a Model for Cosmological Dark Energy,” in p-Adic Mathematical Physics (Am. Inst. Phys., Melville, 2006), AIP Conf. Proc. 826, pp. 301–311; arXiv: astro-ph/0410443.Google Scholar
  15. 15.
    Ya. Volovich, “Numerical Study of Nonlinear Equations with an Infinite Number of Derivatives,” J. Phys. A 36(32), 8685–8701 (2003); arXiv:math-ph/0301028.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    L. V. Joukovskaya, “Iterative Method for Solving Nonlinear Integral Equations Describing Rolling Solutions in String Theory,” Teor. Mat. Fiz. 146(3), 402–409 (2006) [Theor. Math. Phys. 146, 335–342 (2006)].Google Scholar
  17. 17.
    N. Barnaby, T. Biswas, and J. M. Cline, “p-Adic Inflation,” J. High Energy Phys., No. 04, 056 (2007); arXiv: hep-th/0612230.Google Scholar
  18. 18.
    I. Ya. Aref’eva, L. V. Joukovskaya, and S. Yu. Vernov, “Bouncing and Accelerating Solutions in Nonlocal Stringy Models,” J. High Energy Phys., No. 07, 087 (2007); arXiv: hep-th/0701184v4.Google Scholar
  19. 19.
    L. Joukovskaya, “Dynamics in Nonlocal Cosmological Models Derived from String Field Theory,” Phys. Rev. D 76(10), 105007 (2007); arXiv: 0707.1545v2 [hep-th].Google Scholar
  20. 20.
    V. S. Vladimirov and Ya. I. Volovich, “Nonlinear Dynamics Equation in p-adic String Theory,” Teor. Mat. Fiz. 138(3), 355–368 (2004) [Theor. Math. Phys. 138, 297–309 (2004)]; arXiv:math-ph/0306018.MathSciNetGoogle Scholar
  21. 21.
    V. S. Vladimirov, “The Equation of the p-adic Open String for the Scalar Tachyon Field,” Izv. Ross. Akad. Nauk, Ser. Mat. 69(3), 55–80 (2005) [Izv. Math. 69, 487–512 (2005)]; arXiv:math-ph/0507018.MathSciNetGoogle Scholar
  22. 22.
    N. Moeller and B. Zwiebach, “Dynamics with Infinitely Many Time Derivatives and Rolling Tachyons,” J. High Energy Phys., No. 10, 034 (2002); arXiv: hep-th/0207107.Google Scholar
  23. 23.
    D. V. Prokhorenko, “On Some Nonlinear Integral Equation in the (Super)string Theory,” arXiv:math-ph/0611068.Google Scholar
  24. 24.
    V. S. Vladimirov, “The Equation of the p-adic Closed Strings for the Scalar Tachyon Field,” Sci. China A: Math. 51(4), 754–764 (2008).MATHCrossRefGoogle Scholar
  25. 25.
    N. Barnaby and N. Kamran, “Dynamics with Infinitely Many Derivatives: The Initial Value Problem,” arXiv: 0709.3968v2 [hep-th].Google Scholar
  26. 26.
    A. Sen, “Rolling Tachyon,” J. High Energy Phys., No. 04, 048 (2002); arXiv: hep-th/0203211.Google Scholar
  27. 27.
    D. Ghoshal and A. Sen, “Tachyon Condensation and Brane Descent Relations in p-adic String Theory,” Nucl. Phys. B 584, 300–312 (2000).MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    N. Barnaby, “Caustic Formation in Tachyon Effective Field Theories,” J. High Energy Phys., No. 07, 025 (2004); arXiv: hep-th/0406120.Google Scholar
  29. 29.
    E. Coletti, I. Sigalov, and W. Taylor, “Taming the Tachyon in Cubic String Field Theory,” J. High Energy Phys., No. 08, 104 (2005); arXiv: hep-th/0505031.Google Scholar
  30. 30.
    J. A. Minahan, “Mode Interactions of the Tachyon Condensate in p-adic String Theory,” arXiv: hep-th/0102071v1.Google Scholar
  31. 31.
    E. H. Lieb and M. Loss, Analysis (Am. Math. Soc., Providence, RI, 1996; Nauchnaya Kniga, Novosibirsk, 1998).MATHGoogle Scholar
  32. 32.
    A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics (Nauka, Moscow, 1978; Birkhäuser, Basel, 1988).Google Scholar
  33. 33.
    I. P. Natanson, Constructive Function Theory (Gostekhizdat, Moscow, 1949; Frederick Ungar Publishing Co., New York, 1964, 1965).Google Scholar
  34. 34.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Fizmatgiz, Moscow, 1963; Academic, San Diego, CA, 2000).Google Scholar
  35. 35.
    B. M. Levitan, Almost Periodic Functions (Gostekhizdat, Moscow, 1953) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. S. Vladimirov
    • 1
  1. 1.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations