An update on semisimple quantum cohomology and F-manifolds

  • Claus HertlingEmail author
  • Yuri I. Manin
  • Constantin Teleman
Open Access


In the first section of this note, we show that Theorem 1.8.1 of Bayer-Manin can be strengthened in the following way: If the even quantum cohomology of a projective algebraic manifold V is generically semisimple, then V has no odd cohomology and is of Hodge-Tate type. In particular, this answers a question discussed by G. Ciolli. In the second section, we prove that an analytic (or formal ) supermanifold M with a given supercommutative associative \( \mathcal{O}_M \)-bilinear multiplication on its tangent sheaf \( \mathcal{T}_M \) is an F-manifold in the sense of Hertling-Manin if and only if its spectral cover, as an analytic subspace of the cotangent bundle T M * , is coisotropic of maximal dimension. This answers a question of V. Ginzburg. Finally, we discuss these results in the context of mirror symmetry and Landau-Ginzburg models for Fano varieties.


STEKLOV Institute Tangent Sheaf Poisson Structure Cotangent Bundle Hodge Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Auroux, L. Katzarkov, and D. Orlov, “Mirror Symmetry for Del Pezzo Surfaces: Vanishing Cycles and Coherent Sheaves,” Invent. Math. 166(3), 537–582 (2006); arXiv:math/0506166.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Barannikov, “Semi-infinite Hodge Structures and Mirror Symmetry for Projective Spaces,” arXiv:math/0010157.Google Scholar
  3. 3.
    S. Barannikov, “Semi-infinite Variations of Hodge Structures and Integrable Hierarchies of KdV Type,” Int. Math. Res. Not., No. 19, 973–990 (2002); arXiv:math/0108148.Google Scholar
  4. 4.
    A. Bayer, “Semisimple Quantum Cohomology and Blowups,” Int. Math. Res. Not., No. 40, 2069–2083 (2004); arXiv:math/0403260.Google Scholar
  5. 5.
    A. Bayer and Yu. Manin, “(Semi)simple Exercises in Quantum Cohomology,” in Proc. Fano Conf., Torino, Italy, 2002 (Univ. Torino, Torino, 2004), pp. 143–173; arXiv:math/0103164.Google Scholar
  6. 6.
    G. Ciolli, “On the Quantum Cohomology of Some Fano Threefolds and a Conjecture of Dubrovin,” Int. J. Math. 16(8), 823–839 (2005); arXiv:math/0403300.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    B. Dubrovin, “Geometry and Analytic Theory of Frobenius Manifolds,” in Proc. Int. Congr. Math., Berlin, 1998 (Univ. Bielefeld, Bielefeld, 1998), Vol. 2, pp. 315–326.Google Scholar
  8. 8.
    A. Givental, “A Mirror Theorem for Toric Complete Intersections,” in Topological Field Theory, Primitive Forms and Related Topics (Birkhäuser, Boston, 1998), Prog. Math. 160, pp. 141–175.Google Scholar
  9. 9.
    V. V. Golyshev, “Riemann-Roch Variations,” Izv. Ross. Akad. Nauk, Ser. Mat. 65(5), 3–32 (2001) [Izv. Math. 65, 853–881 (2001)].MathSciNetGoogle Scholar
  10. 10.
    V. Golyshev, “A Remark on Minimal Fano Threefolds,” arXiv: 0803.0031.Google Scholar
  11. 11.
    C. Hertling, Frobenius Manifolds and Moduli Spaces for Singularities (Cambridge Univ. Press, Cambridge, 2002).zbMATHGoogle Scholar
  12. 12.
    C. Hertling and Yu. Manin, “Weak Frobenius Manifolds,” Int. Math. Res. Not., No. 6, 277–286 (1999); arXiv:math/9810132.Google Scholar
  13. 13.
    Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces (Am. Math. Soc., Providence, RI, 1999), AMS Colloq. Publ. 47.zbMATHGoogle Scholar
  14. 14.
    Yu. I. Manin, “Manifolds with Multiplication on the Tangent Sheaf,” Rend. Mat. Appl., Ser. 7, 26, 69–85 (2006); arXiv:math.AG/0502578.zbMATHMathSciNetGoogle Scholar
  15. 15.
    Yu. I. Manin, “F-Manifolds with Flat Structure and Dubrovin’s Duality,” Adv. Math. 198, 5–26 (2005) (M. Artin’s Fest).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    S. A. Merkulov, “Operads, Deformation Theory and F-Manifolds,” in Frobenius Manifolds: Quantum Cohomology and Singularities, Ed. by C. Hertling and M. Marcolli (Vieweg, Wiesbaden, 2004), pp. 213–251; arXiv:math.AG/0210478.Google Scholar
  17. 17.
    S. A. Merkulov, “PROP Profile of Poisson Geometry,” Commun. Math. Phys. 262(1), 117–135 (2006); arXiv:math.AG/0401034.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    D. O. Orlov, “Derived Category of Coherent Sheaves and Motives,” Usp. Mat. Nauk 60(6), 231–232 (2005) [Russ. Math. Surv. 60, 1242–1244 (2005)]; arXiv:math/0512620.MathSciNetGoogle Scholar
  19. 19.
    C. Sabbah, Isomonodromic Deformations and Frobenius Manifolds (Springer, Berlin, 2007).zbMATHGoogle Scholar
  20. 20.
    C. Teleman, “The Structure of 2D Semi-simple Field Theories,” arXiv: 0712.0160.Google Scholar
  21. 21.
    E. Zaslow, “Solitons and Helices: The Search for a Math-Physics Bridge,” Commun. Math. Phys. 175(2), 337–375 (1996).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Claus Hertling
    • 1
    Email author
  • Yuri I. Manin
    • 2
    • 3
  • Constantin Teleman
    • 4
    • 5
  1. 1.Institut für MathematikUniversität MannheimMannheimGermany
  2. 2.Northwestern UniversityEvanstonUSA
  3. 3.Max-Planck-Institut für MathematikBonnGermany
  4. 4.University of EdinburghEdinburghUK
  5. 5.University of CaliforniaBerkeleyUSA

Personalised recommendations