Advertisement

Extremal metrics on del Pezzo threefolds

  • I. A. Cheltsov
  • K. A. Shramov
Article

Abstract

We prove the existence of Kähler-Einstein metrics on a nonsingular section of the Grassmannian Gr(2, 5) ⊂ ℙ9 by a linear subspace of codimension 3 and on the Fermat hypersurface of degree 6 in ℙ(1, 1, 1, 2, 3). We also show that a global log canonical threshold of the Mukai-Umemura variety is equal to 1/2.

Keywords

STEKLOV Institute Exceptional Divisor Einstein Metrics Pezzo Surface Cartier Divisor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Grinenko, “On a Double Cone over a Veronese Surface,” Izv. Ross. Akad. Nauk, Ser. Mat. 67(3), 5–22 (2003) [Izv. Math. 67, 421–438 (2003)].MathSciNetGoogle Scholar
  2. 2.
    M. M. Grinenko, “Mori Structures on a Fano Threefold of Index 2 and Degree 1,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 246, 116–141 (2004) [Proc. Steklov Inst. Math. 246, 103–128 (2004)].MathSciNetGoogle Scholar
  3. 3.
    Yu. G. Prokhorov, “Automorphism Groups of Fano Manifolds,” Usp. Mat. Nauk 45(3), 195–196 (1990) [Russ. Math. Surv. 45, 222–223 (1990)].MathSciNetGoogle Scholar
  4. 4.
    A. V. Pukhlikov, “Birational Geometry of Fano Direct Products,” Izv. Ross. Akad. Nauk, Ser. Mat. 69(6), 153–186 (2005) [Izv. Math. 69, 1225–1255 (2005)].MathSciNetGoogle Scholar
  5. 5.
    I. A. Cheltsov, “Log Canonical Thresholds on Hypersurfaces,” Mat. Sb. 192(8), 155–172 (2001) [Sb. Math. 192, 1241–1257 (2001)].MathSciNetGoogle Scholar
  6. 6.
    I. A. Cheltsov, “Extremal Metrics on Two Fano Varieties,” Mat. Sb. 200(1), 97–136 (2009).Google Scholar
  7. 7.
    I. A. Cheltsov and K. A. Shramov, “Log Canonical Thresholds of Smooth Fano Threefolds,” Usp. Mat. Nauk 63(5), 73–180 (2008) [Russ. Math. Surv. 63, 859–958 (2008)].MathSciNetGoogle Scholar
  8. 8.
    V. V. Shokurov, “3-fold Log Flips,” Izv. Ross. Akad. Nauk, Ser. Mat. 56(1), 105–203 (1992) [Russ. Acad. Sci., Izv. Math. 40, 95–202 (1993)].MathSciNetGoogle Scholar
  9. 9.
    C. Arezzo, A. Ghigi, and G. P. Pirola, “Symmetries, Quotients and Kähler-Einstein Metrics,” J. Reine Angew. Math. 591, 177–200 (2006).MATHMathSciNetGoogle Scholar
  10. 10.
    I. Cheltsov, “Fano Varieties with Many Selfmaps,” Adv. Math. 217, 97–124 (2008).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    I. Cheltsov, “Log Canonical Thresholds of del Pezzo Surfaces,” Geom. Funct. Anal. 18, 1118–1144 (2008).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    I. Cheltsov, J. Park, and J. Won, “Log Canonical Thresholds of Certain Fano Hypersurfaces,” arXiv: 0706.0751.Google Scholar
  13. 13.
    J.-P. Demailly and J. Kollár, “Semi-continuity of Complex Singularity Exponents and Kähler-Einstein Metrics on Fano Orbifolds,” Ann. Sci. Éc. Norm. Supér. 34, 525–556 (2001).MATHGoogle Scholar
  14. 14.
    S. K. Donaldson, “A Note on the α-Invariant of the Mukai-Umemura 3-fold,” arXiv: 0711.4357.Google Scholar
  15. 15.
    M. Furushima, “Complex Analytic Compactifications of ℂ3,” Compos. Math. 76, 163–196 (1990).MATHMathSciNetGoogle Scholar
  16. 16.
    M. Furushima, “Mukai-Umemura’s Example of the Fano Threefold with Genus 12 as a Compactification of ℂ3,” Nagoya Math. J. 127, 145–165 (1992).MATHMathSciNetGoogle Scholar
  17. 17.
    J.-M. Hwang, “Log Canonical Thresholds of Divisors on Fano Manifolds of Picard Number 1,” Compos. Math. 143, 89–94 (2007).MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    A. R. Iano-Fletcher, “Working with Weighted Complete Intersections,” in Explicit Birational Geometry of 3-folds (Cambridge Univ. Press, Cambridge, 2000), LMS Lect. Note Ser. 281, pp. 101–173.Google Scholar
  19. 19.
    V. A. Iskovskikh and Yu. G. Prokhorov, Fano Varieties (Springer, Berlin, 1999), Encycl. Math. Sci. 47.Google Scholar
  20. 20.
    J. Kollár, “Singularities of Pairs,” Proc. Symp. Pure Math. 62, 221–287 (1997).Google Scholar
  21. 21.
    R. Lazarsfeld, Positivity in Algebraic Geometry (Springer, Berlin, 2004), Vol. 2.Google Scholar
  22. 22.
    S. Mukai and H. Umemura, “Minimal Rational Threefolds,” in Algebraic Geometry (Springer, Berlin, 1983), Lect. Notes Math. 1016, pp. 490–518.CrossRefGoogle Scholar
  23. 23.
    A. Nadel, “Multiplier Ideal Sheaves and Kähler-Einstein Metrics of Positive Scalar Curvature,” Ann. Math. 132, 549–596 (1990).CrossRefMathSciNetGoogle Scholar
  24. 24.
    Yu. G. Prokhorov and D. Markushevich, “Exceptional Quotient Singularities,” Am. J. Math. 121, 1179–1189 (1999).MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    G. Tian, “On Kähler-Einstein Metrics on Certain Kähler Manifolds with C 1(M) > 0,” Invent. Math. 89, 225–246 (1987).MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    X.-J. Wang and X. Zhu, “Kähler-Ricci Solitons on Toric Manifolds with Positive First Chern Class,” Adv. Math. 188, 87–103 (2004).MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Q. Zhang, “Rational Connectedness of Log ℚ-Fano Varieties,” J. Reine Angew. Math. 590, 131–142 (2006).MATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.School of MathematicsUniversity of EdinburghEdinburghUK

Personalised recommendations