One approach to solving a discrete production planning problem with interval data

  • M. V. Devyaterikova
  • A. A. Kolokolov
  • A. P. Kolosov
Mathematical Programming


In this paper, we develop an approach to solving integer programming problems with interval data based on using the possibilities of varying the relaxation set of the problem. This is illustrated by means of an L-class enumeration algorithm for solving a dicrete production planning problem. We describe the algorithm and a number of its modifications and present results of a computational experiment for families of problems from the OR Library and with randomly generated initial data. This approach is also applied to obtain approximate solutions of the mentioned problem in its conventional setting.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. R. Garey and D. S. Johnson, Computers and Intractability (Freeman, New York, 1979; Mir, Moscow, 1982).MATHGoogle Scholar
  2. 2.
    M. V. Devyaterikova, A. A. Kolokolov, and A. P. Kolosov, in Discrete Optimization and Operations Research (IM SO RAN, Novosibirsk, 2007), p. 124 [in Russian].Google Scholar
  3. 3.
    A. A. Kolokolov, Sibirsk. Zh. Issled. Oper. 1(2), 18 (1994).MathSciNetGoogle Scholar
  4. 4.
    A. A. Kolokolov and M. V. Devyaterikova, L-Class Enumeration Algorithms for the Knapsack Problem with Interval Data (Izd. Omsk. Gos. Univ., Omsk, 2001) [in Russian].Google Scholar
  5. 5.
    A. A. Kolokolov and A. P. Kolosov, in Information Bulletin of the Mathematical Programming Association (UrO RAN, Yekaterinburg, 2007), No. 11, p. 186 [in Russian].Google Scholar
  6. 6.
    I. V. Sergienko, L. N. Kozeratskaya, and T. T. Lebedeva, Stability and Parametric Analysis of Discrete Optimization Problems (Naukova Dumka, Kiev, 1995) [in Russian].Google Scholar
  7. 7.
    Y. Akcay and S. H. Xu, Management Science 50, 99 (2004).CrossRefGoogle Scholar
  8. 8.
    M. V. Devyaterikova and A. A. Kolokolov, in Proc. 12th IFAC Symposium on Information Control Problems in Manufacturing (Elsevier Science, 2006), Vol. 3, pp. 9–13.Google Scholar
  9. 9.
    P. Kouvelis and G. Yu, Robust Discrete Optimization and Its Applications (Kluwer, Dordrecht, 1997).MATHGoogle Scholar
  10. 10.
    E. Y.-H. Lin, INFOR 36(4), 274 (1998).Google Scholar
  11. 11.
    L. L. Lu, S. Y. Chiu, and L. A. Cox, Operations Research 50, 645 (1999).MATHCrossRefGoogle Scholar
  12. 12.
    A. Mahjoub, J. Miheliǧ, C. Rapine, and B. Robiǧ, in Discrete Optimization Methods in Production and Logistics (Nasledie Dialog-Sibir’, Omsk, 2004), pp. 75–80.Google Scholar
  13. 13.
    S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations (New York, Wiley, 1990).MATHGoogle Scholar
  14. 14.

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • M. V. Devyaterikova
    • 1
  • A. A. Kolokolov
    • 1
  • A. P. Kolosov
    • 1
  1. 1.Omsk Branch of the Sobolev Institute of MathematicsSiberian Division of the Russian Academy of SciencesOmskRussia

Personalised recommendations