Problems of homeomorphism arising in the theory of grid generation

  • M. F. ProkhorovaEmail author
Open Access


Some general criteria of being a homeomorphism for continuous maps of topological spaces and topological manifolds are proved in this paper, as well as criteria of being a diffeomorphism for smooth maps of smooth manifolds.


Topological Space STEKLOV Institute Relative Interior Cell Decomposition Topological Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    O. V. Ushakova, Proc. Steklov Inst. Math. Suppl. 1, S78 (2004).MathSciNetGoogle Scholar
  2. 2.
    O. V. Ushakova, in Advances in Grid Generation, Ed. by O. V. Ushakova (Nova Science, New York, 2007), pp. 241–278.Google Scholar
  3. 3.
    N. A. Bobylev, S. A. Ivanenko, and I. G. Ismailov, Mat. Zametki 60(4), 593 (1996).MathSciNetGoogle Scholar
  4. 4.
    N. A. Bobylev, S. A. Ivanenko, and A. V. Kazunin, Zh. Vychisl. Mat. Mat. Fiz. 43(6), 808 (2003).zbMATHMathSciNetGoogle Scholar
  5. 5.
    M. F. Prokhorova, in Problems of Theoretical and Applied Mathematics (UrO RAN, Yekaterinburg, 2007), pp. 65–69 [in Russian].Google Scholar
  6. 6.
    A. Dold, Lectures on Algebraic Topology (Springer-Verlag, Berlin, 1972; Mir, Moscow, 1976).zbMATHGoogle Scholar
  7. 7.
    V. A. Rokhlin and D. B. Fuks, Beginner’s Course in Topology: Geometric Chapters (Nauka, Moscow, 1977; Springer-Verlag, Berlin, 1984).Google Scholar
  8. 8.
    D. Novikov and A. Khovanskii, Mosc. Math. J. 6(1), 135 (2006).zbMATHMathSciNetGoogle Scholar
  9. 9.
    M. Brown, Ann. of Math. 75(2), 331 (1962).CrossRefMathSciNetGoogle Scholar
  10. 10.
    P. S. Aleksandrov and B. A. Pasynkov, Introduction to Dimension Theory. Introduction to the Theory of Topological Spaces and to General Dimension Theory (Nauka, Moscow, 1973) [in Russian].Google Scholar
  11. 11.
    E. Spanier, Algebraic topology (McGraw-Hill, New York, 1966; Mir, Moscow, 1971).zbMATHGoogle Scholar
  12. 12.
    J. Mankres, Elementary Differential Topology (Princeton Univ., Princeton, NJ, 1963).Google Scholar
  13. 13.
    G. H. Meisters and C. Olech, Duke Math. J. 30(1), 63 (1963).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Institute of Mathematics and MechanicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations