Quantization of the universal Teichmüller space

  • A. G. Sergeev


In the first part of the paper, we describe the Kähler geometry of the universal Teichmüller space, which can be realized as an open subset in the complex Banach space of holomorphic quadratic differentials in the unit disc. The universal Teichmüller space contains classical Teichmüller spaces T(G), where G is a Fuchsian group, as complex submanifolds. The quotient Diff+(S 1)/Möb(S 1) of the diffeomorphism group of the unit circle modulo Möbius transformations can be considered as a “smooth” part of the universal Teichmüller space. In the second part we describe how to quantize Diff+(S 1)/Möb(S 1) by embedding it in an infinite-dimensional Siegel disc. This quantization method does not apply to the whole universal Teichmüller space. However, this space can be quantized using the “quantized calculus” of A. Connes and D. Sullivan.


STEKLOV Institute Symplectic Form Central Extension Fuchsian Group Hamiltonian Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. V. Ahlfors, Lectures on Quasiconformal Mappings (Van Nostrand, Princeton, 1966; Mir, Moscow, 1969).zbMATHGoogle Scholar
  2. 2.
    L. V. Ahlfors, “Some Remarks on Teichmüller’s Space of Riemann Surfaces,” Ann. Math., Ser. 2, 74, 171–191 (1961).MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Bowen, “Hausdorff Dimension of Quasi-circles,” Publ. Math., Inst. Hautes Étud. Sci. 50, 11–25 (1979).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Connes, Géométrie non commutative (Intereditions, Paris, 1990).zbMATHGoogle Scholar
  5. 5.
    O. Lehto, Univalent functions and Teichmüller spaces (Springer, Berlin, 1987).zbMATHGoogle Scholar
  6. 6.
    S. Nag, The Complex Analytic Theory of Teichmüller Spaces (J. Wiley and Sons, New York, 1988).zbMATHGoogle Scholar
  7. 7.
    S. Nag, “A Period Mapping in Universal Teichmüller Space,” Bull. Am. Math. Soc. 26, 280–287 (1992).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. Nag and D. Sullivan, “Teichmüller Theory and the Universal Period Mapping via Quantum Calculus and the H 1/2 Space on the Circle,” Osaka J. Math. 32, 1–34 (1995).zbMATHMathSciNetGoogle Scholar
  9. 9.
    S. Nag and A. Verjovsky, “Diff(S 1) and the Teichmüller Spaces,“ Commun. Math. Phys. 130, 123–138 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Pressley and G. Segal, Loop Groups (Clarendon Press, Oxford, 1986; Mir, Moscow, 1990).zbMATHGoogle Scholar
  11. 11.
    S. C. Power, Hankel Operators on Hilbert Space (Pitman, Boston, 1982), Res. Notes Math. 64.zbMATHGoogle Scholar
  12. 12.
    J. Sniatycki, Geometric Quantization and Quantum Mechanics (Springer, New York, 1980).zbMATHGoogle Scholar
  13. 13.
    G. Segal, “Unitary Representations of Some Infinite-Dimensional Groups,” Commun. Math. Phys. 80, 301–342 (1981).zbMATHCrossRefGoogle Scholar
  14. 14.
    D. Shale, “Linear Symmetries of Free Boson Fields,” Trans. Am. Math. Soc. 103, 149–167 (1962).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    G. M. Tuynman, Geometric Quantization (Math. Centrum, Amsterdam, 1985), CWI Syllabus 8: Mathematical Structures in Field Theories: Proc. Semin. 1983–1985, Vol. 1.zbMATHGoogle Scholar
  16. 16.
    N. Woodhouse, Geometric Quantization (Clarendon Press, Oxford, 1980).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. G. Sergeev
    • 1
  1. 1.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations