Spectral stability of the Robin Laplacian

  • V. I. Burenkov
  • M. Lanza de Cristoforis


We consider the Robin Laplacian in two bounded regions Ω1 and Ω2 of ℝ N with Lipschitz boundaries and such that Ω2 ⊂ Ω1, and we obtain two-sided estimates for the eigenvalues λ n,2 of the Robin Laplacian in Ω2 via the eigenvalues λ n, 1 of the Robin Laplacian in Ω1. Our estimates depend on the measure of the set difference Ω\Ω2 and on suitably defined characteristics of vicinity of the boundaries Ω1 and Ω2, and of the functions defined on Ω1 and on Ω2 that enter the Robin boundary conditions.


Sobolev Space STEKLOV Institute Neumann Problem Lipschitz Continuity Lipschitz Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Burenkov, Sobolev Spaces on Domains (B.G. Teubner, Stuttgart, 1998).MATHGoogle Scholar
  2. 2.
    V. I. Burenkov and E. B. Davies, “Spectral Stability of the Neumann Laplacian,” J. Diff. Eqns. 186(2), 485–508 (2002).CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    V. I. Burenkov and P. D. Lamberti, “Spectral Stability of Nonnegative Self-adjoint Operators,” Dokl. Akad. Nauk. 403(2), 159–164 (2005) [Dokl. Math. 72 (1), 507–511 (2005)].MathSciNetGoogle Scholar
  4. 4.
    V. I. Burenkov and P. D. Lamberti, “Spectral Stability of General Non-negative Self-adjoint Operators with Applications to Neumann-Type Operators,” J. Diff. Eqns. 233(2), 345–379 (2007).CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    V. I. Burenkov, P. D. Lamberti, and M. Lanza de Cristoforis, “Spectral Stability of Nonnegative Self-adjoint Operators,” Sovr. Mat., Fundam. Napr. 15, 76–111 (2006).Google Scholar
  6. 6.
    E. B. Davies, Spectral Theory and Differential Operators (Cambridge Univ. Press, Cambridge, 1995), Cambridge Stud. Adv. Math. 42.Google Scholar
  7. 7.
    E. B. Davies, Heat Kernels and Spectral Theory (Cambridge Univ. Press, Cambridge, 1989), Cambridge Tracts Math. 92.MATHGoogle Scholar
  8. 8.
    K. Deimling, Nonlinear Functional Analysis (Springer, Berlin, 1985).MATHGoogle Scholar
  9. 9.
    P. D. Lamberti and M. Lanza de Cristoforis, “A Global Lipschitz Continuity Result for a Domain-Dependent Neumann Eigenvalue Problem for the Laplace Operator,” J. Diff. Eqns. 216(1), 109–133 (2005).CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    E. H. Lieb and M. Loss, Analysis (Am. Math. Soc., Providence, RI, 2001).MATHGoogle Scholar
  11. 11.
    M. Marcus and V. J. Mizel, “Absolute Continuity on Tracks and Mappings of Sobolev Spaces,” Arch. Ration. Mech. Anal. 45, 294–320 (1972).CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    J. Nečas, Les méthodes directes en théorie des équations elliptiques (Masson et Cie, Paris, 1967).Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • V. I. Burenkov
    • 1
  • M. Lanza de Cristoforis
    • 1
  1. 1.Dipartimento di Matematica Pura ed ApplicataUniversità di PadovaPadovaItaly

Personalised recommendations