Stability islands in domains of separatrix crossings in slow-fast Hamiltonian systems

  • A. A. Vasiliev
  • A. I. Neishtadt
  • C. Simó
  • D. V. Treschev


We consider a two-degrees-of-freedom Hamiltonian system with one degree of freedom corresponding to fast motion and the other corresponding to slow motion. The ratio of typical velocities of changes of the slow and fast variables is the small parameter ɛ of the problem. At frozen values of the slow variables, there is a separatrix on the phase plane of the fast variables, and there is a region in the phase space (the domain of separatrix crossings) where the projections of phase points onto the plane of the fast variables repeatedly cross the separatrix in the process of evolution of the slow variables. Under a certain symmetry condition, we prove the existence of many (of order 1/ɛ) stable periodic trajectories in the domain of separatrix crossings. Each of these trajectories is surrounded by a stability island whose measure is estimated from below by a value of order ɛ. So, the total measure of the stability islands is estimated from below by a value independent of ɛ. The proof is based on an analysis of asymptotic formulas for the corresponding Poincaré map.


Hamiltonian System STEKLOV Institute Phase Portrait Slow Variable Phase Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Büchner and L. M. Zelenyi, “Regular and Chaotic Charged Particle Motion in Magnetotaillike Field Reversals. 1: Basic Theory of Trapped Motion,” J. Geophys. Res. A 94(9), 11821–11842 (1989).CrossRefGoogle Scholar
  2. 2.
    A. V. Gurevich and E. E. Tsedilina, Long Distance Propagation of HF Radio Waves (Nauka, Moscow, 1979; Springer, Berlin, 1985).Google Scholar
  3. 3.
    J. Wisdom, “A Perturbative Treatment of Motion Near the 3/1 Commensurability,” Icarus 63(2), 272–289 (1985).CrossRefGoogle Scholar
  4. 4.
    V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1974; Springer, New York, 1978).Google Scholar
  5. 5.
    V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Editorial URSS, Moscow, 2002; Springer, Berlin, 2006).Google Scholar
  6. 6.
    V. I. Arnol’d, “Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics,” Usp. Mat. Nauk 18(6), 91–192 (1963) [Russ. Math. Surv. 18 (6), 85–191 (1963)].Google Scholar
  7. 7.
    D. L. Bruhwiler and J. R. Cary, “Diffusion of Particles in a Slowly Modulated Wave,” Physica D 40(2), 265–282 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. I. Neishtadt and V. V. Sidorenko, “Wisdom System: Dynamics in the Adiabatic Approximation,” Celest. Mech. Dyn. Astron. 90, 307–330 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Y. Elskens and D. F. Escande, “Slowly Pulsating Separatrices Sweep Homoclinic Tangles Where Islands Must Be Small: An Extension of Classical Adiabatic Theory,” Nonlinearity 4(3), 615–667 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. I. Neishtadt, V. V. Sidorenko, and D. V. Treschev, “Stable Periodic Motions in the Problem on Passage through a Separatrix,” Chaos 7, 2–11 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. I. Neishtadt, V. V. Sidorenko, and D. V. Treschev, “On Stability Islands in the Domain of Separatrix Crossings,” in Nonlinear Mechanics, Ed. by V.M. Matrosov, V.V. Rumyantsev, and A.V. Karapetyan (Fizmatlit, Moscow, 2001), pp. 192–203 [in Russian].Google Scholar
  12. 12.
    A. V. Timofeev, “On the Constancy of an Adiabatic Invariant When the Nature of the Motion Changes,” Zh. Eksp. Teor. Fiz. 75(10), 1303–1308 (1978) [Sov. Phys. JETP 48, 656–659 (1978)].MathSciNetGoogle Scholar
  13. 13.
    J. R. Cary, D. F. Escande, and J. L. Tennyson, “Adiabatic-Invariant Change due to Separatrix Crossing,” Phys. Rev. A 34, 4256–4275 (1986).CrossRefGoogle Scholar
  14. 14.
    A. I. Neishtadt, “Change of an Adiabatic Invariant at a Separatrix,” Fiz. Plazmy 12(8), 992–1000 (1986) [Sov. J. Plasma. Phys. 12, 568–573 (1986)].Google Scholar
  15. 15.
    J. R. Cary and R. T. Skodje, “Phase Change between Separatrix Crossings,” Physica D 36, 287–316 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. I. Neishtadt, “On the change in the Adiabatic Invariant on Crossing a Separatrix in Systems with Two Degrees of Freedom,” Prikl. Mat. Mekh. 51(5), 750–757 (1987) [J. Appl. Math. Mech. 51, 586–592 (1987)].MathSciNetGoogle Scholar
  17. 17.
    A. I. Neishtadt and A. A. Vasiliev, “Phase Change between Separatrix Crossings in Slow-Fast Hamiltonian Systems,” Nonlinearity 18(3), 1393–1406 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    A. I. Neishtadt, C. Simó, D. V. Treschev, and A. A. Vasiliev, “Periodic Orbits and Stability Islands in Chaotic Seas Created by Separatrix Crossings in Slow-Fast Systems,” Discr. Contin. Dyn. Syst. (in press);
  19. 19.
    F. A. Tal and E. Vanden-Eijnden, “Transition State Theory and Dynamical Corrections in Ergodic Systems,” Nonlinearity 19(2), 501–509 (2006).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. A. Vasiliev
    • 1
  • A. I. Neishtadt
    • 1
    • 2
  • C. Simó
    • 3
  • D. V. Treschev
    • 4
  1. 1.Space Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Department of Mathematical SciencesLoughborough UniversityLeicestershireUK
  3. 3.Department de Matemàtica Aplicada i AnàlisiUniversitat de BarcelonaBarcelonaSpain
  4. 4.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations