Structural stability of simplest dynamical inequalities

  • Yu. A. Grishina
  • A. A. Davydov


The structural stability of families of orbits is proved for the simplest generic smooth dynamical inequality in the plane with bounded complement of the domain of complete controllability. Typical singularities of the boundaries of nonlocal transitivity zones for such inequalities are found. The stability of these singularities under small perturbations of the generic inequality is proved.


Singular Point Structural Stability STEKLOV Institute Limit Direction Phase Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Andronov and L. S. Pontryagin, “Structurally Stable Systems,” Dokl. Akad. Nauk SSSR 14(5), 247–250 (1937).Google Scholar
  2. 2.
    D. V. Anosov, S. Kh. Aranson, I. U. Bronshtein, and V. Z. Grines, “Smooth Dynamical Systems,” Itogi Nauki Tekh., Ser.: Sovr. Probl. Mat., Fund. Napr. 1, 151–242 (1985); Engl. transl. in Dynamical Systems I (Springer, Berlin, 1988), Encycl. Math. Sci. 1, pp. 149–233.zbMATHMathSciNetGoogle Scholar
  3. 3.
    V. I. Arnold, Additional Chapters of the Theory of Ordinary Differential Equations (Nauka, Moscow, 1978) [in Russian].Google Scholar
  4. 4.
    V. I. Arnold and Yu. S. Il’yashenko, “Ordinary Differential Equations,” Itogi Nauki Tekh., Ser.: Sovr. Probl. Mat., Fund. Napr. 1, 7–149 (1985); Engl. transl. in Dynamical Systems I (Springer, Berlin, 1988), Encycl. Math. Sci. 1, pp. 1–148.MathSciNetGoogle Scholar
  5. 5.
    V. I. Arnold, V. S. Afraimovich, Yu. S. Il’yashenko, and L. P. Shil’nikov, “Bifurcation Theory,” Itogi Nauki Tekh., Ser.: Sovr. Probl. Mat., Fund. Napr. 5, 5–218 (1986); Engl. transl. in Dynamical Systems V (Springer, Berlin, 1994), Encycl. Math. Sci. 5, pp. 1–205.MathSciNetGoogle Scholar
  6. 6.
    V. I. Arnol’d, “Contact Structure, Relaxational Oscillations and Singular Points of Implicit Differential Equations,” in Global Analysis-Studies and Applications III (Springer, Berlin, 1988), Lect. Notes Math. 1334, pp. 173–179.CrossRefGoogle Scholar
  7. 7.
    R. Garcia and J. Sotomayor, “Structural Stability of Parabolic Lines and Periodic Asymptotic Lines,” Mat. Contemp. 12, 83–102 (1997).zbMATHMathSciNetGoogle Scholar
  8. 8.
    R. Garcia, C. Gutierrez, and J. Sotomayor, “Structural Stability of Asymptotic Lines on Surfaces Immersed in ℝ3,” Bull. Sci. Math. 123, 599–622 (1999).CrossRefMathSciNetGoogle Scholar
  9. 9.
    A. A. Davydov, “Normal Form of a Differential Equation, Not Solvable for the Derivative, in a Neighborhood of a Singular Point,” Funkts. Anal. Prilozh. 19(2), 1–10 (1985) [Funct. Anal. Appl. 19, 81–89 (1985)].MathSciNetGoogle Scholar
  10. 10.
    A. A. Davydov, “Structural Stability of Control Systems on Orientable Surfaces,” Mat. Sb. 182(1), 3–35 (1991) [Math. USSR, Sb. 72, 1–28 (1992)].zbMATHGoogle Scholar
  11. 11.
    A. A. Davydov, Qualitative Theory of Control Systems (Am. Math. Soc., Providence, RI, 1994), Transl. Math. Monogr. 141.zbMATHGoogle Scholar
  12. 12.
    A. A. Davydov, “Local Controllability of Typical Dynamical Inequalities on Surfaces,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 209, 84–123 (1995) [Proc. Steklov Inst. Math. 209, 73–106 (1995)].MathSciNetGoogle Scholar
  13. 13.
    A. A. Davydov and E. Rosales-Gonsales, “The Complete Classification of Typical Second-Order Linear Partial Differential Equations on the Plane,” Dokl. Akad. Nauk 350(2), 151–154 (1996) [Dokl. Math. 54 (2), 669–672 (1996)].MathSciNetGoogle Scholar
  14. 14.
    A. A. Davydov, “Controllability of Generic Control Systems on Surfaces,” in Geometry of Feedback and Optimal Control, Ed. by B. Jakubczyk and W. Respondek (M. Dekker, New York, 1998), Monogr. Textbooks Pure Appl. Math. 207, pp. 111–163.Google Scholar
  15. 15.
    A. G. Kuz’min, “On the Behavior of the Characteristics of a Mixed-Type Equation near a Line of Degeneracy,” Diff. Uravn. 17(11), 2052–2063 (1981).zbMATHMathSciNetGoogle Scholar
  16. 16.
    J. Palis, Jr. and W. de Melo, Geometric Theory of Dynamical Systems (Springer, New York, 1982; URSS, Moscow, 1998).zbMATHGoogle Scholar
  17. 17.
    A. D. Piliya and V. I. Fedorov, “Singularities of an Electromagnetic Wave Field in Cold Plasma with a Two-Dimensional Inhomogeneity,” Zh. Eksp. Teor. Fiz. 60(1), 389–399 (1971).Google Scholar
  18. 18.
    A. V. Pkhakadze and A. A. Shestakov, “Classification of Singular Points of a Differential Equation Not Solved with Respect to the Derivative,” Mat. Sb. 49(1), 3–12 (1959).MathSciNetGoogle Scholar
  19. 19.
    F. Takens, “Constrained Equations: A Study of Implicit Differential Equations and Their Discontinuous Solutions,” in Structural Stability, the Theory of Catastrophes, and Applications in the Sciences: Proc. Conf. Seattle, WA, 1975 (Springer, Berlin, 1976), Lect. Notes Math. 525, pp. 143–234.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • Yu. A. Grishina
    • 1
  • A. A. Davydov
    • 1
    • 2
  1. 1.Vladimir State UniversityVladimirRussia
  2. 2.International Institute for Applied Systems AnalysisLaxenburgAustria

Personalised recommendations