Identification of the state of a moving object by observation of geophysical fields

  • V. L. Gasilov
  • V. B. Kostousov
  • A. P. Kukushkin


Problems of identification of the state of a moving object by observation of the geophysical fields are considered. To correct the errors accumulated in the inertial navigation system of the object, the extremal comparison of the information about the outer geophysical fields with the a priori information about them stored in the onboard computer is used (the correlation-extremal approach). The general principles for investigation of the systems for navigation of moving objects by the outer informational fields are described. A model of navigation by the geophysical field and a method for a priori estimation of the local informativeness of the field are suggested.


STEKLOV Institute Inertial Navigation System True Track Geophysical Field Navigation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Yu. Ishlinskii, Orientation, Gyroscopes, and Inertial Navigation (Nauka, Moscow, 1967) [in Russian].Google Scholar
  2. 2.
    I. N. Beloglazov, G. I. Dzhandzhgava, and G. P. Chigin, Foundations of Navigation by Geophysical Fields (Nauka, Moscow, 1985) [in Russian].Google Scholar
  3. 3.
    A. I. Lur’e, Analytical Mechanics (Fizmatgiz, Moscow, 1961) [in Russian].Google Scholar
  4. 4.
    A. A. Lebedev and L. S. Chernobrovkin, Dynamics of Flight (Mashinostroenie, Moscow, 1973) [in Russian].Google Scholar
  5. 5.
    A. A. Krasovskii, I. N. Beloglazov, and G. P. Chigin, Theory of Correlation-Extremal Navigation Systems (Nauka, Moscow, 1979) [in Russian].Google Scholar
  6. 6.
    D. M. Himmelblau, Applied Nonlinear Programming (Mir, Moscow, 1975) [in Russian].Google Scholar
  7. 7.
    V. B. Kostousov and A. P. Kukushkin, in Problems of Modeling and Optimization (IMM UrO RAN, Sverdlovsk, 1991). [in Russian].Google Scholar
  8. 8.
    V. L. Gasilov and V. B. Kostousov, Izv. Ros. Akad. Nauk. Tekhn. Kibern., No. 3, 78 (1994).Google Scholar
  9. 9.
    V. I. Berdyshev, Dokl. Ros. Akad. Nauk 325(6), 1099 (1992).Google Scholar
  10. 10.
    O. A. Stepanov, Methods for Estimation of Potential Accuracy of Correlation-Extremal Navigation Systems (Tsentr. Nauchn.-Issled. Instit. Elektropribor, St.-Petersburg, Russia, 1993) [in Russian].Google Scholar
  11. 11.
    V. L. Gasilov, N. N. Krasovskii, and Yu. S. Osipov, in Tez. Dokl. Vsesoyuznoi Shkoly po Problemam Matematicheskogo Obespecheniya i Arkhitectury Vychislitel’nykh Sistem (Tashkent, 1988). [in Russian].Google Scholar
  12. 12.
    V. S. Pugachev, Theory of Random Functions and Its Applications to Problems of Automatic Control (Fizmatgiz, Moscow, 1962) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. L. Gasilov
    • 1
  • V. B. Kostousov
    • 1
  • A. P. Kukushkin
    • 1
  1. 1.Institute of Mathematics and MechanicsUral Branch of the Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations