Advertisement

Optimal guaranteed control of delay systems

  • R. Gabasov
  • N. M. Dmitruk
  • F. M. Kirillova
Article

Abstract

A linear problem of optimal guaranteed control of a delay system is considered in which geometric constraints on control actions and terminal constraints on states are present. A new concept of a state of the problem that represents a finite-dimensional vector is introduced. Three kinds of optimal feedback are defined. We describe methods for implementing open-loop and closable optimal feedbacks. They are based on a fast dual method for the correction of optimal programs. The results are illustrated by examples.

Keywords

Control Action Optimal Control Problem STEKLOV Institute Performance Criterion Delay System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Interscience, New York, 1962; Nauka, Moscow, 1969).zbMATHGoogle Scholar
  2. 2.
    R. Bellman, Dynamic Programming (Princeton Univ., Princeton, 1957; Inostrannaya Literatura, Moscow, 1960).Google Scholar
  3. 3.
    R. Gabasov and F. M. Kirillova, Dokl. Nats. Akad. Nauk Belarus 48(1), 15 (2004).MathSciNetGoogle Scholar
  4. 4.
    R. Gabasov and F. M. Kirillova, in Fast Solutions of Discretized Optimization Problems (Berlin, 2000), Intern. Ser. Numer. Math. 138, Ed. by K.-H. Hoffmann, R. Hoppe, and V. Schulz (Birkhäuser, Basel, 2001), pp. 107–119.Google Scholar
  5. 5.
    N. V. Balashevich, R. Gabasov, and F. M. Kirillova, Zh. Vychisl. Mat. Mat. Fiz. 40(6), 838 (2000) [Comput. Math. Math. Phys. 40 (6), 799 (2000)].MathSciNetGoogle Scholar
  6. 6.
    R. Gabasov, F. M. Kirillova, and N. V. Balashevich, SIAM J. Control Optim. 39(4), 1008 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    N. V. Balashevich, R. Gabasov, A. I. Kalinin, and F. M. Kirillova, Zh. Vychisl. Mat. Mat. Fiz. 42(7), 969 (2002) [Comput. Math. Math. Phys. 42 (7), 931 (2002)].zbMATHMathSciNetGoogle Scholar
  8. 8.
    N. V. Balashevich, R. Gabasov, and F. M. Kirillova, Zh. Vychisl. Mat. Mat. Fiz. 45(12), 2112 (2005) [Comput. Math. Math. Phys. 45 (12), 2030 (2002)].zbMATHMathSciNetGoogle Scholar
  9. 9.
    R. Gabasov, N. M. Dmitruk, and F. M. Kirillova, Proc. Steklov Inst. Math., 52 (2004), Suppl. 2), Transl. from Trudy Inst. Mat. Mekh. Ural’sk. Otd. Ross. Akad. Nauk 10 (2), 33 (2004).Google Scholar
  10. 10.
    R. P. Fedorenko, Approximate Solution of Optimal Control Problems (Nauka, Moscow, 1978) [in Russian].zbMATHGoogle Scholar
  11. 11.
    R. Gabasov, F. M. Kirillova, and A. I. Tyatyushkin, Constructive Optimization Methods, Part 1: Linear Problems (Universitetskoe, Minsk, 1984) [in Russian].Google Scholar
  12. 12.
    N. N. Krasovskii, Some Problems of the Theory of Motion Stability (Fizmatgiz, Moscow, 1959; English transl.: Stability of Motion, Stanford Univ., Stanford, 1963).Google Scholar
  13. 13.
    A. V. Kim, S. S. Rubleva, and Y. S. Choi, Proc. Steklov Inst. Math., 123 (2005, Suppl. 1). Transl. from Inst. Mat. Mekh. Ural’sk. Otd. Ross. Akad. Nauk 11 (1), 111 (2005).Google Scholar
  14. 14.
    N. N. Krasovskii, Control of a Dynamic System. The Problem of the Minimum of the Guaranteed Result (Nauka, Moscow, 1985) [in Russian].Google Scholar
  15. 15.
    N. V. Balashevich, R. Gabasov, and F. M. Kirillova, Zh. Vychisl. Mat. Mat. Fiz. 44(2), 265 (2004) [Comput. Math. Math. Phys. 44 (2), 247 (2004)].zbMATHMathSciNetGoogle Scholar
  16. 16.
    R. Gabasov and F. M. Kirillova, Dokl. Nats. Akad. Nauk Belarus 49(4), 31 (2005).MathSciNetGoogle Scholar
  17. 17.
    N. N. Krasovskii and Yu. S. Osipov, Izv. Akad. Nauk SSSR, Ser. Tekh. Kibernetika, No. 6, 3 (1963).Google Scholar
  18. 18.
    N. V. Balashevich, R. Gabasov, and F. M. Kirillova, Dokl. Akad. Nauk 410(2), 173 (2006) [Doklady Mathematics 74 (2), 780 (2006)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • R. Gabasov
    • 1
  • N. M. Dmitruk
    • 2
  • F. M. Kirillova
    • 2
  1. 1.Belarussian State UniversityMinskBelarus
  2. 2.Institute of MathematicsBelarussian Academy of SciencesMinskBelarus

Personalised recommendations