On the fall of a heavy rigid body in an ideal fluid

  • A. V. Borisov
  • V. V. Kozlov
  • I. S. Mamaev
Article

Abstract

We consider a problem about the motion of a heavy rigid body in an unbounded volume of an ideal irrotational incompressible fluid. This problem generalizes a classical Kirchhoff problem describing the inertial motion of a rigid body in a fluid. We study different special statements of the problem: the plane motion and the motion of an axially symmetric body. In the general case of motion of a rigid body, we study the stability of partial solutions and point out limiting behaviors of the motion when the time increases infinitely. Using numerical computations on the plane of initial conditions, we construct domains corresponding to different types of the asymptotic behavior. We establish the fractal nature of the boundary separating these domains.

References

  1. 1.
    A. V. Borisov, Regul. Chaotic Dyn. 1(2), 61 (1996).MATHGoogle Scholar
  2. 2.
    A. V. Borisov and A. I. Kir’yanov, in Mathematical Methods in Mechanics (MGU, Moscow, 1990), pp. 16–21 [in Russian].Google Scholar
  3. 3.
    A. V. Borisov and I. S. Mamaev, Prikl. Mat. Mekh. 67(2), 256 (2003) [J. Appl. Math. Mech. 67 (2), 227 (2003)].MATHMathSciNetGoogle Scholar
  4. 4.
    A. V. Borisov, I. S. Mamaev, and A. G. Kholmskaya, Vestn. molodykh uchenykh. Spb. Prikl. Mat. Mekh., No. 4, 13 (2000).Google Scholar
  5. 5.
    D. N. Goryachev, Izv. Imper. ob-va lyubitelei estestvoznaniya pri Mosk. Imperat. Univ. 78(2), 59 (1893).Google Scholar
  6. 6.
    M. V. Deryabin, Izv. Ross. Akad. Nauk, Ser. Mekh. Tverd. Tela, No. 5, 30 (2002).Google Scholar
  7. 7.
    M. V. Deryabin and V. V. Kozlov, Izv. Ross. Akad. Nauk, Ser. Mekh. Tverd. Tela, No. 1, 68 (2002).Google Scholar
  8. 8.
    E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955; IL, Moscow, 1958).Google Scholar
  9. 9.
    V. V. Kozlov, Izv. Akad. Nauk SSSR, Ser. Mekh. Tverd. Tela, No. 5, 10 (1989).Google Scholar
  10. 10.
    V. V. Kozlov, Mat. Zametki 45(4), 46 (1989) [Math. Notes 45 (3–4), 296 (1989)].MATHGoogle Scholar
  11. 11.
    V. V. Kozlov, Prikl. Mat. Mekh. 55(1), 12 (1991) [J. Appl. Math. Mech. 55 (1), 8 (1991)].MATHMathSciNetGoogle Scholar
  12. 12.
    V. V. Kozlov and D. A. Onishchenko, Dokl. Akad. Nauk SSSR 266(6), 1298 (1982).MATHMathSciNetGoogle Scholar
  13. 13.
    H. Lamb, Hydrodynamics, 6th ed. (Dover Publ., N. Y., 1945; Cambridge University Press, Cambridge, 1993; OGIZ, Gostekhizdat, Moscow, 1947).Google Scholar
  14. 14.
    A. I. Neishtadt, Izv. Akad. Nauk SSSR, Ser. Mekh. Tverd. Tela, No. 6, 30 (1980).Google Scholar
  15. 15.
    S. M. Ramodanov, Vestn. Moskov. Univ., Ser. Mat. Mekh. No. 3, 93 (1995).Google Scholar
  16. 16.
    V. A. Steklov, The Supplements to the Work “On the Motion of a Rigid Body in a Fluid” (Khar’kov, 1895) [in Russian].Google Scholar
  17. 17.
    V. A. Steklov, On the Motion of a Rigid Body in a Fluid (Khar’kov, 1893) [in Russian].Google Scholar
  18. 18.
    V. A. Steklov, Trudy Otd. Fiz. Nauk Ob-va Lyubitelei Estestvoznaniya, Antropologii i Etnografii 7, 1 (1895).Google Scholar
  19. 19.
    S. A. Chaplygin, in Collected Works (GITTL, Moscow-Leningrad, 1948), Vol. 1, pp. 337–346.Google Scholar
  20. 20.
    S. A. Chaplygin, in Complete Works (Izd. Akad Nauk SSSR, Leningrad, 1933), Vol. 1, pp. 133–150.Google Scholar
  21. 21.
    H. Aref and S. W. Jones, Phys. Fluids A 5(12), 3026 (1993).MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    M. L. Bertolli and S. V. Bolotin, Ann. di Matem. Pura ed. Applicata CLXXIV(IV), 253 (1998).Google Scholar
  23. 23.
    M. V. Deryabin, Regul. Chaotic Dyn. 3(1), 93 (1998).MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    M. V. Deryabin, Z. Angew. Math. Mech. 83(3), 197 (2003).MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. V. Borisov
    • 1
  • V. V. Kozlov
    • 2
  • I. S. Mamaev
    • 1
  1. 1.Institute of Computer ScienceIzhevskRussia
  2. 2.The Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations