Variations of Hartogs’ theorem

  • E. M. Chirka
Article

Abstract

Hartogs’ separate analyticity theorem is extended to functions holomorphic along holomorphic curves that form mutually transversal foliations of the domain of definition of these functions.

Keywords

Compact Subset Holomorphic Function STEKLOV Institute Quasiconformal Mapping Harmonic Measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Ahlfors, Lectures on Quasiconformal Mappings (Van Nostrand, Princeton, 1966; Mir, Moscow, 1969).Google Scholar
  2. 2.
    I. N. Vekua, Generalized Analytic Functions (Nauka, Moscow, 1988) [in Russian].Google Scholar
  3. 3.
    A. S. Sadullaev, “Rational Approximation and Pluripolar Sets,” Mat. Sb. 119, 96–118 (1982) [Math. USSR, Sb. 47, 91–113 (1984)].MATHMathSciNetGoogle Scholar
  4. 4.
    A. S. Sadullaev and E. M. Chirka, “On Continuation of Functions with Polar Singularities,” Mat. Sb. 132, 383–390 (1987) [Math. USSR, Sb. 60, 377–384 (1988)].MATHGoogle Scholar
  5. 5.
    E. M. Chirka, “Regularity of the Boundaries of Analytic Sets,” Mat. Sb. 117, 291–335 (1982) [Math. USSR, Sb. 45, 291–335 (1983)].MATHMathSciNetGoogle Scholar
  6. 6.
    E. M. Chirka, “Generalized Hartogs’ Lemma and a Nonlinear \(\overline \partial \)-Equation,” in Complex Analysis in Contemporary Mathematics (Fazis, Moscow, 2001), pp. 19–31 [in Russian].Google Scholar
  7. 7.
    E. M. Chirka, “Quasi-holomorphic Mappings,” in Geometric Analysis and Its Applications (Volgograd. Gos. Univ., Volgograd, 2005), pp. 203–241 [in Russian].Google Scholar
  8. 8.
    B. V. Shabat, Introduction to Complex Analysis (Nauka, Moscow, 1985; Am. Math. Soc., Providence, 1992), Part 2.Google Scholar
  9. 9.
    L. Bers and H. L. Royden, “Holomorphic Families of Injections,” Acta Math. 157, 259–286 (1986).MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    F. Hartogs, “Zur Theorie der analitischen Funktionen mehrerer unabhändiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiben,” Math. Ann. 62, 1–88 (1906).MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Mañé, P. Sad, and D. Sullivan, “On the Dynamics of Rational Maps,” Ann. Sci. Èc. Norm. Super. 16, 193–217 (1983).MATHGoogle Scholar
  12. 12.
    J.-P. Rosay, “A Counterexample to the Hartogs Phenomenon (a Question by E. Chirka),” Mich. Math. J. 45, 529–535 (1998).MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    W. Rothstein, “Ein neuer Beweis des Hartogsschen Hauptsatzes und seine Ausdehnung auf meromorphe Funktionen,” Math. Z. 53, 84–95 (1950).MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    W. Rudin, Function Theory in the Unit Ball of ℂ n (Springer, Berlin, 1980).Google Scholar
  15. 15.
    Z. Slodkowski, “Polynomial Hulls in ℂ2 and Quasicircles,” Ann. Scuola Norm. Super. Pisa, Ser. 4, 16, 367–391 (1989).MATHMathSciNetGoogle Scholar
  16. 16.
    Z. Slodkowski, “Holomorphic Motions and Polynomial Hulls,” Proc. Am. Math. Soc. 111, 347–355 (1991).MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • E. M. Chirka
    • 1
  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations