Kähler geometry of the universal Teichmüller space and coadjoint orbits of the Virasoro group

  • A. G. Sergeev


The Kähler geometry of the universal Teichmüller space and related infinite-dimensional Kähler manifolds is studied. The universal Teichmüller space T may be realized as an open subset in the complex Banach space of holomorphic quadratic differentials in the unit disc. The classical Teichmüller spaces T(G), where G is a Fuchsian group, are contained in T as complex Kähler submanifolds. The homogeneous spaces Diff+(S 1)/Möb(S 1) and Diff+(S 1)/S 1 of the diffeomorphism group Diff+(S 1) of the unit circle are closely related to T. They are Kähler Frechet manifolds that can be realized as coadjoint orbits of the Virasoro group (and exhaust all coadjoint orbits of this group that have the Kähler structure).


STEKLOV Institute Symplectic Form Fuchsian Group Coadjoint Orbit Beltrami Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. V. Ahlfors, Lectures on Quasiconformal Mappings (Van Nostrand, Princeton, 1966; Mir, Moscow, 1969).Google Scholar
  2. 2.
    R. Bowen, “Hausdorff Dimension of Quasicircles,” Publ. Math., Inst. Hautes Étud. Sci. 50, 259–273 (1979).Google Scholar
  3. 3.
    A. Douady and C. J. Earle, “Conformally Natural Extension of Homeomorphisms of the Circle,” Acta Math. 157, 23–48 (1986).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    C. J. Earle and J. Elles, “On the Differential Geometry of Teichmüller Spaces,” J. Anal. Math. 19, 35–52 (1967).zbMATHCrossRefGoogle Scholar
  5. 5.
    L. Guieu, “Nombre de rotation, structures géométriques sur un cercle et groupe de Bott-Virasoro,” Ann. Inst. Fourier 46, 971–1009 (1996).zbMATHMathSciNetGoogle Scholar
  6. 6.
    A. A. Kirillov, “Infinite Dimensional Lie Groups: Their Orbits, Invariants and Representations. The Geometry of Moments,” in Twistor Geometry and Nonlinear Systems, Primorsko (Bulg.), 1980 (Springer, Berlin, 1982), Lect. Notes Math. 970, pp. 101–123.Google Scholar
  7. 7.
    A. A. Kirillov and D. V. Yur’ev, “Kähler Geometry of the Infinite-Dimensional Homogeneous Space M = Diff+(S 1)/Rot(S 1),” Funkts. Anal. Prilozh. 21(4), 35–46 (1987) [Funct. Anal. Appl. 21, 284–294 (1987)].zbMATHMathSciNetGoogle Scholar
  8. 8.
    V. F. Lazutkin and T. F. Pankratova, “Normal Forms and Versal Deformations for Hill’s Equation,” Funkts. Anal. Prilozh. 9(4), 41–48 (1975) [Funct. Anal. Appl. 9, 306–311 (1975)].zbMATHMathSciNetGoogle Scholar
  9. 9.
    L. Lempert, “The Virasoro Group as a Complex Manifold,” Math. Res. Lett. 2, 479–495 (1995).zbMATHMathSciNetGoogle Scholar
  10. 10.
    S. Nag, The Complex Analytic Theory of Teichmüller Spaces (J. Wiley and Sons, New York, 1988).Google Scholar
  11. 11.
    S. Nag, “A Period Mapping in Universal Teichmüller Space,” Bull. Am. Math. Soc. 26, 280–287 (1992).zbMATHMathSciNetGoogle Scholar
  12. 12.
    S. Nag and D. Sullivan, “Teichmüller Theory and the Universal Period Mapping via Quantum Calculus and the H 1/2 Space on the Circle,” Osaka J. Math. 32, 1–34 (1995).zbMATHMathSciNetGoogle Scholar
  13. 13.
    S. Nag and A. Verjovsky, “Diff(S 1) and the Teichmüller Spaces,” Commun. Math. Phys. 130, 123–138 (1990).zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Pfluger, “Über die Konstruktion Riemannscher Flächen durch Verhäftung,” J. Indian Math. Soc. 24, 401–412 (1961).zbMATHMathSciNetGoogle Scholar
  15. 15.
    A. Pressley and G. Segal, Loop Groups (Clarendon Press, Oxford, 1986; Mir, Moscow, 1990).Google Scholar
  16. 16.
    G. Segal, “Unitary Representations of Some Infinite-Dimensional Groups,” Commun. Math. Phys. 80, 301–392 (1981).zbMATHCrossRefGoogle Scholar
  17. 17.
    A. G. Sergeev, Kähler Geometry of Loop Spaces (Moscow Cent. Cont. Math. Educ., Moscow, 2001) [in Russian].Google Scholar
  18. 18.
    E. Witten, “Coadjoint Orbits of the Virasoro Group,” Commun. Math. Phys. 114, 1–53 (1988).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. G. Sergeev
    • 1
  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations