Advertisement

A confinal family of equivalence relations and Borel ideals generating them

  • V. G. Kanovei
  • V. A. Lyubetsky
Article
  • 20 Downloads

Abstract

An increasing θ1-sequence of Borel equivalence relations on a Polish space that is cofinal (in the sense of Borel reducibility) in the family of all Borel equivalence relations is defined as a development of Rosendal’s construction. It is proved that equivalence relations from this sequence are generated by explicitly defined Borel ideals.

Keywords

Equivalence Relation Polish Space Borel Equivalence Relation Borel Ideal Borel Reducibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Adams and A. S. Kechris, “Linear Algebraic Groups and Countable Borel Equivalence Relations,” J. Am. Math. Soc. 13(4), 909–943 (2000).CrossRefMathSciNetGoogle Scholar
  2. 2.
    I. Farah, “Basic Problem for Turbulent Actions. II: c 0-Equalities,” Proc. London Math. Soc. 82, 1–30 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    H. Friedman and L. Stanley, “A Borel Reducibility Theory for Classes of Countable Structures,” J. Symb. Logic 54(3), 894–914 (1989).MathSciNetGoogle Scholar
  4. 4.
    L. A. Harrington, A. S. Kechris, and A. Louveau, “A Glimm-Effros Dichotomy for Borel Equivalence Relations,” J. Am. Math. Soc. 310, 293–302 (1988).CrossRefGoogle Scholar
  5. 5.
    G. Hjorth, Classification and Orbit Equivalence Relations (Am. Math. Soc., Providence, RI, 2000), Math. Surv. Monogr. 75.Google Scholar
  6. 6.
    G. Hjorth, A. S. Kechris, and A. Louveau, “Borel Equivalence Relations Induced by Actions of the Symmetric Group,” Ann. Pure Appl. Logic 92, 63–112 (1998).CrossRefMathSciNetGoogle Scholar
  7. 7.
    V. G. Kanovei, “Topologies Generated by Effectively Suslin Sets and Their Applications in Descriptive Set Theory,” Usp. Mat. Nauk 51(3), 17–52 (1996) [Russ. Math. Surv. 51, 385–417 (1996)].zbMATHMathSciNetGoogle Scholar
  8. 8.
    V. G. Kanovei and V. A. Lyubetskii, “On Some Classical Problems of Descriptive Set Theory,” Usp. Mat. Nauk 58(5), 3–88 (2003) [Russ. Math. Surv. 58, 839–927 (2003)].MathSciNetGoogle Scholar
  9. 9.
    V. G. Kanovei and M. Reeken, “Some New Results on Borel Irreducibility of Equivalence Relations,” Izv. Ross. Akad. Nauk, Ser. Mat. 67(1), 59–82 (2003) [Izv. Math. 67, 55–76 (2003)].MathSciNetGoogle Scholar
  10. 10.
    L. V. Keldysh, The Structure of B-Sets (Akad. Nauk SSSR, Moscow, 1944), Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 17.Google Scholar
  11. 11.
    A. S. Kechris, Classical Descriptive Set Theory (Springer, Berlin, 1995), Grad. Texts Math. 156.Google Scholar
  12. 12.
    A. S. Kechris, “New Directions in Descriptive Set Theory,” Bull. Symb. Logic 5(2), 161–174 (1999).zbMATHMathSciNetGoogle Scholar
  13. 13.
    A. Louveau and C. Rosendal, “Complete Analytic Equivalence Relations,” Trans. Am. Math. Soc. 357(12), 4839–4866 (2005).CrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Louveau and B. Velickovic, “A Note on Borel Equivalence Relations,” Proc. Am. Math. Soc. 120, 255–259 (1994).CrossRefMathSciNetGoogle Scholar
  15. 15.
    N. Lusin, “Sur les classes des constituantes des complementaires analytiques,” Ann. Scuola Norm. Super. Pisa, II Ser. 2(3), 269–282 (1933).zbMATHGoogle Scholar
  16. 16.
    N. Lusin and W. Sierpiński, “Sur quelques proprietes des ensembles (A),” Bull. Int. Acad. Sci. Cracovie 4, 35–48 (1928).Google Scholar
  17. 17.
    C. Rosendal, “Cofinal Families of Borel Equivalence Relations and Quasiorders,” J. Symb. Logic 70(4), 1325–1340 (2005).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. G. Kanovei
    • 1
  • V. A. Lyubetsky
    • 1
  1. 1.Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations