Advertisement

Thermal Engineering

, Volume 66, Issue 3, pp 149–168 | Cite as

Methods for Beneficiation of Ash and Slag Waste from Coal-Fired Thermal Power Plants and Ways for Their Commercial Use (a Review)

  • Yu. V. RyabovEmail author
  • L. M. Delitsyn
  • N. N. Ezhova
  • S. V. Sudareva
STEAM BOILERS, POWER-PLANT FUELS, BURNER UNITS, AND BOILER AUXILIARY EQUIPMENT

Abstract—

Ash and slag waste (ASW) from coal-fired thermal power plants (TPPs), the amounts of which make several tens or even hundreds of millions of tons per annum, require allocation of large land areas for storing them. This waste is a source of pollution emitted into the atmosphere and it poisons the aqueous medium and soil. Ash and slag waste consists primarily of powderlike material containing a large quantity of unburned carbon (5–25%), magnetic materials (5–20%), and alumino-silicate components. All these components are a valuable raw material for industry, especially silicon and aluminum oxides, which can be used in the production of construction materials. For this purpose, ash must be preliminarily subjected to beneficiation using physical and physicochemical methods. The article presents an analysis of dry and wet ash beneficiation methods with a view to increase the volumes of using ASW produced from domestic power plants. For achieving higher strength of concretes, mechanical activation is carried out, which relates to dry ASW beneficiation methods. To obtain an alumino-silicate product containing 1.5–4.5% of carbon, such dry processing method as electrostatic separation is used. By subjecting dry ash to combined magnetic and electrostatic separation methods, it is possible to obtain an ash and a conducting product with a high concentration of carbon. For Russia, wet ASW beneficiation methods are of the greatest importance, because wet ash and slag removal is used at the majority of TPPs. Hydraulic classification of waste for obtaining products containing particles of different sizes is one of the wet beneficiation process stages. By using the froth flotation method, it is possible to obtain a concentrate containing 65–70% of carbon, a material that can serve as boiler fuel. The froth flotation is regarded as a necessary method for integrated utilization of ASW. Wet magnetic and electrostatic separation are the basic methods for producing magnetic concentrate containing 62–65% of iron. The article presents methods for separating hollow microspheres from AWS, which are a valuable product for aggregates used in the civil construction industry. The article also considers integrated ash beneficiation methods for obtaining four basic products (the figures in parentheses indicate the content of the relevant element): hollow microspheres, carbon product (64.5% of carbon), magnetic product (62% of iron), and alumino-silicate product (no more than 3% of carbon).

Keywords:

TPP ash TPP slags ash beneficiation dry beneficiation methods wet beneficiation methods mechanical activation magnetic separation electrostatic separation froth flotation hollow microspheres carbon concentrate magnetic concentrate alumino-silicate product 

Notes

ACKNOWLEDGMENTS

This work was carried out under support of State Assignment GR: AAAA-A16-116051810068-1.

REFERENCES

  1. 1.
    R. S. Blisset and N. A. Rowson, “A review of the multi-component utilization of coal fly ash,” Fuel 97, 1–23 (2012).CrossRefGoogle Scholar
  2. 2.
    Z. T. Yao, X. S. Ji, P. K. Sarker, J. H. Tang, L. Q. Ge, M. S. Xia, and Y. Q. Xi, “A comprehensive review on the applications of coal fly ash,” Earth-Sci. Rev. 141, 105–121 (2015). doi  https://doi.org/10.1016/j.earscirev.2014.11.016 CrossRefGoogle Scholar
  3. 3.
    V. D. Samygin, L. O. Filippov, and D. V. Shekhirev, Fundamentals of Ore Dressing (Al’teks, Moscow, 2003) [in Russian].Google Scholar
  4. 4.
    P. K. Sahoo, K. Kim, M. A. Powell, and Sk. Md. Equeenuddin, “Recovery of metals and other beneficial products from coal ash: A sustainable approach for fly ash management,” Int. J. Coal Sci. Technol. 3, 267–283 (2016). doi  https://doi.org/10.1007/s40789-016-0141-2 CrossRefGoogle Scholar
  5. 5.
    W. Franus, M. M. Wiatros-Motyka, and M. Wdovin, “Coal fly ash as resource for rare earth elements,” Environ. Sci. Pollut. Res. 22, 9464–9474 (2015). doi  https://doi.org/10.1007/s11356-015-4111-9 CrossRefGoogle Scholar
  6. 6.
    Composition and Properties of Ash and Slag of Thermal Power Plants: Handbook, Ed. by V. A. Melent’ev, (Energoatomizdat, Leningrad, 1985) [in Russian].Google Scholar
  7. 7.
    EN (European Standard) 450-1:2008, Flugasche fuer Beton.Google Scholar
  8. 8.
    A. G. Tumanovskii, Yu. K. Tselykovskii, A. M. Zykov, L. M. Delitsyn, and S. F. Torkhunov, “Technical solutions for the use of ash-and-slag waste of Kashira District Power Plant,” Energetik, No. 4, 27–31 (2014).Google Scholar
  9. 9.
    A. V. Satrya and D. Hardijito, “Simple mechanical beneficiation method of coarse fly ash with high LOI for making HVFA mortar,” Civ. Eng. Dimens. 17, 38–43 (2015). doi  https://doi.org/10.9744/CED.17.1.38-43 Google Scholar
  10. 10.
    L. M. Delitsyn, A. S. Vlasov, N. N. Ezhova, and S. V. Sudareva, “The possibilities of using ash from the Cherepet district power station to obtain a useful product (Aggloporite),” Therm. Eng. 57, 622–625 (2010).CrossRefGoogle Scholar
  11. 11.
    L. Bakor, A. Gupta, and S. Gasiorowski, “Triboelectrostatic beneficiation of land filled fly ash,” in Proc. 6th World of Coal Ash (WOCA) Conf., Nashville, TN, 5–7 May 2015.Google Scholar
  12. 12.
    E. Yu. Temnikova, A. R. Bogomolov, A. V. Poltavets, and A. S. Sysolyatin, “Prospects of using fly ash produced at Kemerovo District Power Plant,” Vestn. Kuzbas. Gos. Tekh. Univ., No. 1, 90–96 (2017). https:// vestnik.kuzstu.ru/index.php?page=articles&id=3198.Google Scholar
  13. 13.
    V. A. Arsent’ev and E. L. Kotova, “New dry enrichment technology of coal power plants’ fly ash based on applied mineralogy methods,” Zap. Gornogo Inst. 220, 521–525 (2016).Google Scholar
  14. 14.
    N. B. Uzdennikov, A. S. Kirichek, Yu. N. Zubkova, and L. N. Oleinik, RU Patent No. 2013136 C1 B03C 1/00. http://www.findpatent.ru/patent/201/2013136.html.Google Scholar
  15. 15.
    V. V. Zyryanov, RF Patent No. 206 5782 MKI 6 V07V7/083, Otkryt. Izobret., No. 24 (1996). http:// www.findpatent.ru/patent/206/2065782.html.Google Scholar
  16. 16.
    L. M. Delitsyn, Yu. V. Ryabov, and A. S. Vlasov, “Possible technologies for disposal of ash,” Energosberezhenie, No. 2, 60–66 (2014).Google Scholar
  17. 17.
    P. Muaze, “Recovery of carbon from coal fly ash emitted by power plants’ boilers,” in Proc. 5th Int. Coal Preparation Congress, Pittsburg, PA, Oct. 3–7, 1966 (Nedra, Moscow, 1970), pp. 5–11.Google Scholar
  18. 18.
    R. B. Mensan-Biney and E. H. Marten, “An intergrated approach to processing of coal combustion ash and organic bio-solids,” in Proc. World of Coal Ash (WOCA), Covington, KY, May 7–10, 2007 (Univ. of Kentucky Center for Applied Energy Research and the American Coal Ash Association, Lexington, KY, 2007).Google Scholar
  19. 19.
    Yu. V. Ryabov, L. M. Delitsyn, A. S. Vlasov, and T. I. Borodina, “Carbon flotation of Kashira TPP fly ash,” Obogashch. Rud., No. 4, 35–39 (2013).Google Scholar
  20. 20.
    V. D. Samygin, Ch. A. Lekhationov, M. S. Tertyshnikov, and Yu. V. Ryabov, “Use of multizone flotation machine for carbon recovery,” Gornyi Zh., No. 3, 55–59 (2016).Google Scholar
  21. 21.
    G. J. Jameson, “New ditections in flotation mashine design,” Miner. Eng. 23, 835–841 (2010). doi  https://doi.org/10.1016/j.mineng.2010.04.001 CrossRefGoogle Scholar
  22. 22.
    L. M. Delitsyn, A. S. Vlasov, Yu. V. Ryabov, V. D. Samygin, and Yu. N. Golubev, “Complex enrichment and processing of coal power plant ash in the Russian Federation,” in Proc. 9th CIS Congr. of the Mineral Processing Engineers, Moscow, Feb. 26–28. 2013 (MISiS, Moscow, 2013), Vol. 1, pp. 225–230. https:// docplayer.ru/56761967-Ix-kongress-obogatiteley-stran-sngfevralya-2013-g-sbornik-materialov-tom-i.html.Google Scholar
  23. 23.
    L. Ya. Kizel’shtein, I. V. Dubov, A. L. Shpittsgluz, and S. G. Parada, Components of Ashes and Slags (Energoatomizdat, Moscow, 1995), pp. 141–152 [in Russian].Google Scholar
  24. 24.
    Y. J. Cao, G. S. Li, J. T. Liu, H. J. Zhang, and X. Zhai, “Removal of unburned carbon from fly ash using a cyclonic-static microbubble flotation column,” J. South. Afr. Inst. Min. Metall. 112, 891–896 (2012).Google Scholar
  25. 25.
    V. N. Petukhov, A. V. Sablin, A. A. Lavrinenko, and A. A. Yunash, “Study of floatability of coals with different mineralization using a new reagent-collector,” Vestn. Magnitogorsk. Gos. Tekh. Univ., No. 2, 31–33 (2008).Google Scholar
  26. 26.
    T. G. Voloshchuk, Intensification of Flotation of Difficult to Enrich Coals Based on Synergism of the Action of Hydrocarbons, Candidate’s Dissertation in Engineering (Magnitogorsk. Gos. Gorno-Metall. Akad., 1997).Google Scholar
  27. 27.
    Yu. V. Ryabov, L. M. Delitsyn, and N. N. Ezhova, “Flotation recovery of carbon from fly ash of coal-fired power plants using mix of kerosene with gasoil,” Obogashch. Rud, No. 5, 48–54 (2016).Google Scholar
  28. 28.
    V. N. Petukhov, A. V. Bychkova, and E. V. Gunina, “Application of polymeric connections as a reagent-modifier during flotation of small coal,” Teor. Tekhnol. Metall. Proizvod. 15 (2), 16–18 (2014). http:// ttmp.magtu.ru/doc/ttmp-2-2014.pdf.Google Scholar
  29. 29.
    A. A. Lavrinenko and A. S. Sirchenko, “The use of high molecular weight copolymers as modifiers in the flotation of coal of varying degrees of metamorphism,” Gornyi Inf.-Anal. Byull., No. S14, 249–262 (2009).Google Scholar
  30. 30.
    Yu. V. Ryabov, L. M. Delitsyn, N. N. Ezhova, and A. A. Lavrinenko, “SAS conditioning agent application efficiency in flotation of unburned carbon from coal-fired power plants fly ash,” Obogashch. Rud, No. 1, 43–49 (2018).Google Scholar
  31. 31.
    Yu. V. Ryabov, L. M. Delitsyn, A. S. Vlasov, and Yu. N. Golubev, “Recovery of magnetic products from Kashira Power Plant’s fly ash,” Obogashch. Rud, No. 6, 41–45 (2013).Google Scholar
  32. 32.
    Yu. N. Golubev, RF Patent No. 78097 MPK VOZS, V22S (2008).Google Scholar
  33. 33.
    A. V. Chudakov, “Stabilization of the composition of ferrospheres by electrostatic separation,” in Young Oil: Proc. 1st All-Russ. Youth Sci.-Tech. Conf. of Oil-Gas Industry, Krasnoyarsk, May 15–17, 2014 (Sib. Fed. Univ., Krasnoyarsk, 2014). http://conf.sfu-kras.ru/sites/oil2014/.Google Scholar
  34. 34.
    Z. G. Zdanovskii, “Experience of extracting microspheres from ash for use in the industry,” Energetika 12, 11–12 (1991).Google Scholar
  35. 35.
    V. N. Rodin, L. S. Solov’ev, A. A. Ermakov, B. V. Berg, and B. E. Tsypkin, Patent VO3D No. 43791, Byull. Izobret., No. 4 (2002). http://poleznayamodel.ru/model/ 4/43791.html.Google Scholar
  36. 36.
    L. M. Manocha, K. A. Ram, and S. M. Manocha, “Separation of cenospheres from fly ashes by flotation method,” Eurasian Chem.-Technol. J. 13, 89–95 (2011). doi  https://doi.org/10.18321/ectj72 Google Scholar
  37. 37.
    L. D. Danilin, V. S. Drozhzhin, M. D. Kuvaev, N. V. Maksimova, I. V. Pikulin, S. A. Redyushev, and M. Ya. Shpirt, “Making of a microsphere at Belovo District Power Plant,” Territ. Neftegaz, No. 12, 115–117 (2014).Google Scholar
  38. 38.
    I. N. Yul’chinskii, E. N. Kozyrev, O. N. Kozyreva, M. Yu. Ross, Yu. A. Kozhevnikov, Yu. M. Shchekotikhin, and V. G. Chirkov, Patent No. RU 126630 U1. B03B9/04; B03D1/00, Byull. Izobret., No. 10 (2013). http://poleznayamodel.ru/model/12/126630.html.Google Scholar
  39. 39.
    Microsphere is the Material of Modern Ideas. http://inoteck.ru/?p=221.Google Scholar
  40. 40.
    V. N. Mashur’yan and V. V. Tsarev, RU Patent No. 2296624C2 (2007). http://www.freepatent.ru/patents/2296624.Google Scholar
  41. 41.
    Z. R. Ismagilov, N. V. Shikina, N. V. Zhuravleva, R. R. Potokina, N. A. Rudina, V. A. Ushakov, and T. N. Teryaeva, “Aluminosilicate microspheres from the fly ash of Kuzbass coal–burning power stations,” Solid Fuel Chem. 49, 245–253 (2015). doi  https://doi.org/10.3103/S0361521915040035 CrossRefGoogle Scholar
  42. 42.
    “RockTron — Solution of the ash-and-slag waste problem,” Vestn. (Stroit., Arkhit., Infrastruktura), No. 7 (2012). http://www.xn––8sbebnbtbqnqpzjefgfdd2s. xn–p1ai/archive/articles/4474.html.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • Yu. V. Ryabov
    • 1
    Email author
  • L. M. Delitsyn
    • 1
  • N. N. Ezhova
    • 1
  • S. V. Sudareva
    • 1
  1. 1.Joint Institute of High Temperatures, Russian Academy of Sciences (JIHT RAS)MoscowRussia

Personalised recommendations