Advertisement

Thermal Engineering

, Volume 65, Issue 11, pp 799–805 | Cite as

Matters Concerned with Development of Autonomous Cogeneration Energy Complexes on the Basis of Microhydropower Plants

  • A. V. VolkovEmail author
  • A. V. Ryzhenkov
  • A. G. Parygin
  • A. V. Naumov
  • A. A. Druzhinin
  • A. A. Vikhlyantsev
  • J. Šoukal
  • M. Sedlář
  • M. Komárek
  • F. Pochylý
  • P. Rudolf
  • S. Fialová
Energy Conservation, New and Renewable Energy Sources
  • 8 Downloads

Abstract

In connection with the depletion of the world reserves of fuel resources and growing environmental safety requirements for power-generating facilities, the article presents a review analysis of the present state of conventional power supply systems in Russia and in the European Union countries (for the latter, the Czech Republic is taken as an example). We consider promising lines of research in the fields of energy conservation and development of efficient and environmentally clean energy sources and specific features of their process circuit solutions and technical embodiment as well as solutions necessary for putting new technologies into use in the real energy sector. In the conventional power industry, facilities implemented according to the principle of combined generation of electricity and heat—so-called cogeneration—have received wide use. Such facilities can be constructed not only on the basis of fuel engine units (gas turbines, diesel–generators, etc.) but also using renewable energy sources. It is pointed out that, with the modern scientific-technical level, the line involving the use—within combined power supply systems—of power-generating facilities having minimal negative impact on the environment has been developed to an insufficient extent. The article considers the modern state of hydraulic power engineering for estimating the possibility of using hydropower resources for development of investigations in this field. Prerequisites for constructing combined, first of all, autonomous energy sources of the micro power capacity class (up to 100 kW), in particular, a cogeneration power complex on the basis of a microhydropower plant, are considered. The results from design-theoretical and experimental investigations into the cogeneration complex structural components are outlined; a basic circuit solution for such energy source aimed at independently supplying electricity and heat for a consumer is shown, and promising ways for further improving the proposed technical solution and making it more efficient are pointed out.

Keywords

energy conservation energy efficiency combined power supply environmentally clean technologies cogeneration energy complex microhydropower plant development trends Smart Grids plug&play 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Feasibility study: Synchronous consolidation UES/CES with UCTE,” UCTE IPSUPS Study (2008). http://www.soups.ru/fileadmin/files/company/international/ucte-ees/Obzor_osnovnykh_rabot_i_rezultatov_ Proekta.pdf.Google Scholar
  2. 2.
    J. Šoukal, F. Pochylý, M. Varchola, A. G. Parygin, A. V. Volkov, G. P. Khovanov, and A. V. Naumov, “Selection of axial hydraulic turbines for low-head microhydropower plants,” Therm. Eng. 62, 862–867 (2015). doi 10.1134/S0040601515120071CrossRefGoogle Scholar
  3. 3.
    On the Holding the Year of Especially Protected Natural Areas in Russian Federation, RF President Decree of August 1, 2015 No. 392.Google Scholar
  4. 4.
    GOST 32144–2013. Power Quality Limits in the Public Power Supply Systems (2014).Google Scholar
  5. 5.
    EN 50160. Voltage Characteristics of Public Distribution Systems (2003).Google Scholar
  6. 6.
    GOST 19179–73. Hydrology of Land. Terms and Definitions (1975).Google Scholar
  7. 7.
    Q. F. Zhang, B. Smith, and W. Zhang, Small Hydropower Cost Reference Model (Oak Ridge National Laboratory Report No. ORNL/TM-2012/501, Oak Ridge National Lab. & U. S. Department of Energy, 2012).CrossRefGoogle Scholar
  8. 8.
    A. V. Volkov, A. G. Parygin, A. V. Naumov, A. A. Vikhlyantsev, A. A. Druzhinin, and S. V. Grigoriev, “Application of methods of the optimum control theory for development of high efficiency centrifugal pumps,” Int. J. Appl. Eng. Res. 12, 8768–8778 (2017). http://www.ripublication.com/Volume/ijaerv12n19.htm.Google Scholar
  9. 9.
    M. Whaley and K. Pattie, “Standalone power systems for remote rural areas,” in Proc. 44th Int. Conf. on Large High Voltage Electric Systems, Paris, France, Aug. 26–31, 2012, Code 94880.Google Scholar
  10. 10.
    V. F. Kasilov, A. A. Dudolin, and S. M. Krasheninnikov, “Development of a thermal scheme for a cogeneration combined-cycle unit with an SVBR-100 reactor,” Therm. Eng. 64, 97–103 (2017). doi 10.1134/S0040601517020033CrossRefGoogle Scholar
  11. 11.
    V. A. Yaroslavov, “Experience of building self-generated objects on the basis of renewable energy sources,” in Proc. Int. Conf. Self-Generation as a Highly-Rentable Business and an Instrument of Twofold Reduction of Energy Consumption, Moscow, Oct. 26, 2017. http://www.heatpower-expo.ru/ru-RU/business-programme/394.aspx.Google Scholar
  12. 12.
    A. V. Klimenko, V. S. Agababov, I. P. Il’ina, V. D. Rozhnatovskii, and A. V. Burmakina, “Layouts of trigeneration plants for centralized power supply,” Therm. Eng. 63, 414–421 (2016). doi 10.1134/S0040601516060045CrossRefGoogle Scholar
  13. 13.
    R. A. Amerkhanov, A. S. Kirichenko, R. S. Kas’yanov, V. S. Kostenko, A. A. Kulichkina, A. A. Skorokhod, E. G. Armaganyan, and V. V. Dvornyi, “Possibilities of use of renewable sources of energy of Krasnodar region,” Al’tern. Energ. Ekol., No. 13–14, 13–25 (2015).Google Scholar
  14. 14.
    A. V. Volkov and A. A. Druzhinin, “On the question of design of a pontoon low-pressure microHPP,” Molodezhnyi Nauchno-Tekh. Vestn. MGTU im. N. E. Baumana, No. 9, 1–5 (2015). http://ainsnt.ru/doc/801672.html.Google Scholar
  15. 15.
    F. Pochylý, P. Rudolf, M. Haluza, M. Hudec, D. Štefan, and P. Čupr, “Vývoj virové turbiny v násoskovém uspořádáni,” in Proc. HydroTurbo 2016: 23rd Annual Int. Conf. on Hydro-Power, Znojmo, Czech Republic, Oct. 25–27, 2016.Google Scholar
  16. 16.
    P. Rudolf and M. Haluza, “Innovative small hydro plant,” in Proc. 2-nd Annual Advanced Hydropower Generation Forum. London, 19 March, 2013.Google Scholar
  17. 17.
    A. V. Volkov, A. G. Parygin, A. V. Ryzhenkov, A. A. Druzhinin, A. S. Ivanov, and E. M. Shitov, “On possibilities of creating systems for autonomous power supply of pipeline cathodic protection stations,” Res. J. Pharm., Biol. Chem. Sci. 7, 561–569 (2016). http://www.rjpbcs.com/2016_7.6.html.Google Scholar
  18. 18.
    A. G. Parygin, A. V. Volkov, A. V. Ryzhenkov, A. V. Naumov, A. A. Druzhinin, and A. A. Vikhlyantsev, “On the possibilities of using low-pressure micro HPP for autonomous power supply of technological devices,” Neftyanoe Khoz., No. 10, 127–130 (2015).Google Scholar
  19. 19.
    A. V. Volkov, A. G. Parygin, A. V. Ryzhenkov, A. A. Druzhinin, and A. V. Naumov, “Optimization algorithm of parameters of low head microhydropower plant at an early design stage,” Int. J. Appl. Eng. Res. 11, 10878–10886 (2016). http://www.ripublication. com/Volume/ijaerv11n22.htm.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. V. Volkov
    • 1
  • A. V. Ryzhenkov
    • 1
  • A. G. Parygin
    • 1
  • A. V. Naumov
    • 1
  • A. A. Druzhinin
    • 1
  • A. A. Vikhlyantsev
    • 1
  • J. Šoukal
    • 2
  • M. Sedlář
    • 2
  • M. Komárek
    • 2
  • F. Pochylý
    • 3
  • P. Rudolf
    • 3
  • S. Fialová
    • 3
  1. 1.National Research University Moscow Power Engineering InstituteMoscowRussia
  2. 2.Centrum hydraulického výzkumu spol. s r.o. Sigma (Hydraulic Research Center Sigma)LutínCzech Republic
  3. 3.Vysoké učení technické v Brně (Brno Technical University)BrnoCzech Republic

Personalised recommendations